No Arabic abstract
The Yau-Zaslow conjecture determines the reduced genus 0 Gromov-Witten invariants of K3 surfaces in terms of the Dedekind eta function. Classical intersections of curves in the moduli of K3 surfaces with Noether-Lefschetz divisors are related to 3-fold Gromov-Witten theory via the K3 invariants. Results by Borcherds and Kudla-Millson determine the classical intersections in terms of vector-valued modular forms. Proven mirror transformations can often be used to calculate the 3-fold invariants which arise. Via a detailed study of the STU model (determining special curves in the moduli of K3 surfaces), we prove the Yau-Zaslow conjecture for all curve classes on K3 surfaces. Two modular form identities are required. The first, the Klemm-Lerche-Mayr identity relating hypergeometric series to modular forms after mirror transformation, is proven here. The second, the Harvey-Moore identity, is proven by D. Zagier and presented in the paper.
We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithmetic manifolds of the same type. For compact manifolds this was proved in cite{BMM11}, here we extend the results of cite{BMM11} to non-compact manifolds. This allows us to apply our results to the moduli spaces of quasi-polarized K3 surfaces.
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold total space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.
Let $Z$ be a closed subscheme of a smooth complex projective complete intersection variety $Ysubseteq Ps^N$, with $dim Y=2r+1geq 3$. We describe the Neron-Severi group $NS_r(X)$ of a general smooth hypersurface $Xsubset Y$ of sufficiently large degree containing $Z$.
Let $Z$ be a closed subscheme of a smooth complex projective variety $Ysubseteq Ps^N$, with $dim,Y=2r+1geq 3$. We describe the intermediate Neron-Severi group (i.e. the image of the cycle map $A_r(X)to H_{2r}(X;mathbb{Z})$) of a general smooth hypersurface $Xsubset Y$ of sufficiently large degree containing $Z$.
We prove the KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. Our results apply in every genus and for every curve class. The proof uses the Gromov-Witten/Pairs correspondence for K3-fibered hypersurfaces of dimension 3 to reduce the KKV conjecture to statements about stable pairs on (thickenings of) K3 surfaces. Using degeneration arguments and new multiple cover results for stable pairs, we reduce the KKV conjecture further to the known primitive cases. Our results yield a new proof of the full Yau-Zaslow formula, establish new Gromov-Witten multiple cover formulas, and express the fiberwise Gromov-Witten partition functions of K3-fibered 3-folds in terms of explicit modular forms.