Do you want to publish a course? Click here

An $N$-channel spinless p-wave superconducting wire is known to go through a series of $N$ topological phase transitions upon increasing the disorder strength. Here, we show that at each of those transitions the density of states shows a Dyson singularity $ u(varepsilon) propto varepsilon^{-1}|lnvarepsilon|^{-3} $, whereas $ u(varepsilon) propto varepsilon^{|alpha|-1}$ has a power-law singularity for small energies $varepsilon$ away from the critical points. Using the concept of superuniversality [Gruzberg, Read, and Vishveshwara, Phys. Rev. B 71, 245124 (2005)], we are able to relate the exponent $alpha$ to the wires transport properties at zero energy and, hence, to the mean free path $l$ and the superconducting coherence length $xi$.
Certain band insulators allow for the adiabatic pumping of quantized charge or spin for special time-dependences of the Hamiltonian. These topological pumps are closely related to two dimensional topological insulating phases of matter upon rolling the insulator up to a cylinder and threading it with a time dependent flux. In this article we extend the classification of topological pumps to the Wigner Dyson and chiral classes, coupled to multi-channel leads. The topological index distinguishing different topological classes is formulated in terms of the scattering matrix of the system. We argue that similar to topologically non-trivial insulators, topological pumps are characterized by the appearance of protected gapless end states during the course of a pumping cycle. We show that this property allows for the pumping of quantized charge or spin in the weak coupling limit. Our results may also be applied to two dimensional topological insulators, where they give a physically transparent interpretation of the topologically non-trivial phases in terms of scattering matrices.
When adiabatically varied in time, certain one-dimensional band insulators allow for the quantized noiseless pumping of spin even in the presence of strong spin orbit scattering. These spin pumps are closely related to the quantum spin Hall system, and their properties are protected by a time-reversal restriction on the pumping cycle. In this paper we study pumps formed of one-dimensional insulators with a time-reversal restriction on the pumping cycle and a bulk energy gap which arises due to interactions. We find that the correlated gapped phase can lead to novel pumping properties. In particular, systems with $d$ different ground states can give rise to $d+1$ different classes of spin pumps, including a trivial class which does not pump quantized spin and $d$ non-trivial classes allowing for the pumping of quantized spin $hbar/n $ on average per cycle, where $1leq nleq d$. We discuss an example of a spin pump that transfers on average spin $ hbar/2$ without transferring charge.
Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case that the spin flip originates from a spatially non-uniform magnetization direction in the half metal. We calculate both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of the gradient of the magnetization with respect to the interface. Establishing a connection between the scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green function in the half metal.
We compare a fully quantum mechanical numerical calculation of the conductivity of graphene to the semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice spacing, we find quantitative agreement between the two approaches away from the Dirac point. At the Dirac point the two theories are incompatible at weak disorder, although they may be compatible for strong disorder. Our numerical calculations provide a quantitative description of the full crossover between the quantum and semiclassical graphene transport regimes.
We find that the triplet Andreev reflection amplitude at the interface between a half-metal and an s-wave superconductor in the presence of a domain wall is significantly enhanced if the half metal is a thin film, rather than an extended magnet. The enhancement is by a factor $l_{rm d}/d$, where $l_{rm d}$ is the width of the domain wall and $d$ the film thickness. We conclude that in a lateral geometry, domain walls can be an effective source of the triplet proximity effect.
We calculate the magnetic-field and temperature dependence of all quantum corrections to the ensemble-averaged conductance of a network of quantum dots. We consider the limit that the dimensionless conductance of the network is large, so that the quantum corrections are small in comparison to the leading, classical contribution to the conductance. For a quantum dot network the conductance and its quantum corrections can be expressed solely in terms of the conductances and form factors of the contacts and the capacitances of the quantum dots. In particular, we calculate the temperature dependence of the weak localization correction and show that it is described by an effective dephasing rate proportional to temperature.
We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively describe this mechanism in two different ways: the explicit description of transition probabilities in terms of interfering trajectories, and an hierarchical integration over fluctuations in the classical phase space of the array cavities.
In disordered metals, electron-electron interactions are the origin of a small correction to the conductivity, the Altshuler-Aronov correction. Here we investigate the Altshuler-Aronov correction of a conductor in which the electron motion is ballistic and chaotic. We consider the case of a double quantum dot, which is the simplest example of a ballistic conductor in which the Altshuler-Aronov correction is nonzero. The fact that the electron motion is ballistic leads to an exponential suppression of the correction if the Ehrenfest time is larger than the mean dwell time or the inverse temperature.
81 - Piet W. Brouwer 2007
In ballistic conductors, there is a low-time threshold for the appearance of quantum effects in transport coefficients. This low-time threshold is the Ehrenfest time. Most previous studies of the Ehrenfest-time dependence of quantum transport assumed ergodic electron dynamics, so that they could be applied to ballistic quantum dots only. In this article we present a theory of the Ehrenfest-time dependence of three signatures of quantum transport - the Fano factor for the shot noise power, the weak localization correction to the conductance, and the conductance fluctuations - for arbitrary ballistic conductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا