We compare a fully quantum mechanical numerical calculation of the conductivity of graphene to the semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice spacing, we find quantitative agreement between the two approaches away from the Dirac point. At the Dirac point the two theories are incompatible at weak disorder, although they may be compatible for strong disorder. Our numerical calculations provide a quantitative description of the full crossover between the quantum and semiclassical graphene transport regimes.
Different scattering mechanisms in graphene are explored and conductivity is calculated within the Boltzmann transport theory. We provide results for short-range scattering using the Random Phase Approximation for electron screening, as well as analytical expressions for the dependence of conductivity on the dielectric constant of the substrate. We further examine the effect of ripples on the transport using a surface roughness model developed for semiconductor heterostructures. We find that close to the Dirac point, sigma sim n^beta, where beta=1,0,-2 for Coulomb, short-range and surface roughness respectively; implying that Coulomb scattering dominates over both short-range and surface roughness scattering at low density.
A Drude-Boltzmann theory is used to calculate the transport properties of bilayer graphene. We find that for typical carrier densities accessible in graphene experiments, the dominant scattering mechanism is overscreened Coulomb impurities that behave like short-range scatterers. We anticipate that the conductivity $sigma(n)$ is linear in $n$ at high density and has a plateau at low density corresponding to a residual density of $n^* = sqrt{n_{rm imp} {tilde n}}$, where ${tilde n}$ is a constant which we estimate using a self-consistent Thomas-Fermi screening approximation to be ${tilde n} approx 0.01 ~q_{rm TF}^2 approx 140 times 10^{10} {rm cm}^{-2}$. Analytic results are derived for the conductivity as a function of the charged impurity density. We also comment on the temperature dependence of the bilayer conductivity.
We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accounting for both nearest neighbor and next-nearest neighbor exchange interactions with easy-plane anisotropy, we perform atomistic spin simulations on a two-terminal configuration across the full magnetic phase diagram. We found that as long as the ground state magnetic moments remain in-plane, irrespective of whether the magnetic configuration is ferromagnetic, collinear or non-collinear antiferromagnetic, the system exhibits spin superfluid behavior with a device output that is independent on the value of the exchange interactions. When the magnetic frustration is large enough to compete with the easy-plane anisotropy and cant the magnetic moments out of the plane, the spin transport progressively evolves towards the diffusive regime. The robustness of spin superfluidity close to magnetic phase boundaries is investigated and we uncover the possibility for {em proximate} spin superfluidity close to the ferromagnetic transition.
In model studies of the spin/anomalous Hall effect, effective Hamiltonians often serve as the starting point. However, a complete effective quantum theory contains not only the effective Hamiltonian but also the relation linking the physical observables to the canonical ones. We construct the semiclassical Boltzmann (SB) transport framework in the weak disorder-potential regime directly in the level of the effective quantum theory, and confirm this construction by formulating a generalized Kohn-Luttinger density matrix transport theory also in this level. The link and difference between the present SB theory and previous phenomenological Boltzmann, quantum kinetic and usual Kubo-Streda theories are clarified. We also present the slightly generalized Kubo-Streda formula in the level of the effective quantum theory. In this level, it is the generalized Kubo-Streda formula rather than the usual one that leads to the same physical interpretations as the present SB theory. In the application to a Rashba 2D effective model, a nonzero spin Hall effect important in the case of strong Rashba coupling but neglected in previous theories is found.
Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin diffusion theory, but this theory is not necessarily applicable when charge transport becomes ballistic or when the spin diffusion length is exceptionally long. Here, we study these regimes by performing quantum simulations of graphene nonlocal spin valves. We find that conventional spin diffusion theory fails to capture the crossover to the ballistic regime as well as the limit of long spin diffusion length. We show that the latter can be described by an extension of the current theoretical framework. Finally, by covering the whole range of spin dynamics, our study opens a new perspective to predict and scrutinize spin transport in graphene and other two-dimensional material-based ultraclean devices.