Do you want to publish a course? Click here

Enhanced triplet Andreev reflection off a domain wall in a lateral geometry

115   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find that the triplet Andreev reflection amplitude at the interface between a half-metal and an s-wave superconductor in the presence of a domain wall is significantly enhanced if the half metal is a thin film, rather than an extended magnet. The enhancement is by a factor $l_{rm d}/d$, where $l_{rm d}$ is the width of the domain wall and $d$ the film thickness. We conclude that in a lateral geometry, domain walls can be an effective source of the triplet proximity effect.



rate research

Read More

Andreev reflection in graphene is special since it can be of two types- retro or specular. Specular Andreev reflection (SAR) dominates when the position of the Fermi energy in graphene is comparable to or smaller than the superconducting gap. Bilayer graphene (BLG) is an ideal candidate to observe the crossover from retro to specular since the Fermi energy broadening near the Dirac point is much weaker compared to monolayer graphene. Recently, the observation of signatures of SAR in BLG have been reported experimentally by looking at the enhancement of conductance at finite bias near the Dirac point. However, the signatures were not very pronounced possibly due to the participation of normal quasi-particles at bias energies close to the superconducting gap. Here, we propose a scheme to observe the features of enhanced SAR even at zero bias at a normal metal (NM)-superconductor (SC) junction on BLG. Our scheme involves applying a Zeeman field to the NM side of the NM-SC junction on BLG (making the NM ferromagnetic), which energetically separates the Dirac points for up-spin and down-spin. We calculate the conductance as a function of chemical potential and bias within the superconducting gap and show that well-defined regions of specular- and retro-type Andreev reflection exist. We compare the results with and without superconductivity. We also investigate the possibility of the formation of a p-n junction at the interface between the NM and SC due to a work function mismatch.
Current noise is measured with a SQUID in low impedance and transparent Nb-Al-Nb j unctions of length comparable to the phase breaking length and much longer than the thermal length. The shot noise amplitude is compared with theoretical predictions of doubled shot noise in diffusive normal/superconductor (NS) junctions due to the Andreev reflections. We discuss the heat dissipation away from the normal part through the NS interfaces. A weak applied magnetic field reduces the amplitude of the 1/f noise by a factor of two, showing that even far from equilibrium the sample is in the mesoscopic regime.
We investigate electron transport through the interface between a niobium superconductor and the edge of a two-dimensional semimetal, realized in a 20~nm wide HgTe quantum well. Experimentally, we observe that typical behavior of a single Andreev contact is complicated by both a pronounced zero-bias resistance anomaly and shallow subgap resistance oscillations with $1/n$ periodicity. These results are demonstrated to be independent of the superconducting material and should be regarded as specific to a 2D semimetal in a proximity with a superconductor. We interpret these effects to originate from the Andreev-like correlated process at the edge of a two-dimensional semimetal.
336 - A. Kormanyos , I. Grace , 2008
We study Andreev reflection in a normal conductor-molecule-superconductor junction using a first principles approach. In particular, we focus on a family of molecules consisting of a molecular backbone and a weakly coupled side group. We show that the presence of the side group can lead to a Fano resonance in the Andreev reflection. We use a simple theoretical model to explain the results of the numerical calculations and to make predictions about the possible sub-gap resonance structures in the Andreev reflection coefficient.
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides with enhanced conduction at both edges of the flake, as is deduced from measuring a SQUID pattern at reduced gate voltages. We identify the specific crystal facet of the edge with enhanced conduction, and confirm this by measuring multiple devices. Furthermore, we argue the even-odd effect is due to crossed Andreev reflection, a process where a Cooper pair splits up over the two edges and recombines at the opposite contact. An entirely $h/e$ periodic SQUID pattern, as well as the observation of both even-odd and odd-even effects, corroborates this conclusion. Crossed Andreev reflection could be harnessed for creating a topological state of matter or performing experiments on the non-local spin-entanglement of spatially separated Cooper pairs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا