Do you want to publish a course? Click here

The activity generated by an ensemble of neurons is affected by various noise sources. It is a well-recognised challenge to understand the effects of noise on the stability of such networks. We demonstrate that the patterns of activity generated by networks of grid cells emerge from the instability of homogeneous activity for small levels of noise. This is carried out by upscaling a noisy grid cell model to a system of partial differential equations in order to analyse the robustness of network activity patterns with respect to noise. Inhomogeneous network patterns are numerically understood as branches bifurcating from unstable homogeneous states for small noise levels. We prove that there is a phase transition occurring as the level of noise decreases. Our numerical study also indicates the presence of hysteresis phenomena close to the precise critical noise value.
We give sharp conditions for the large time asymptotic simplification of aggregation-diffusion equations with linear diffusion. As soon as the interaction potential is bounded and its first and second derivatives decay fast enough at infinity, then the linear diffusion overcomes its effect, either attractive or repulsive, for large times independently of the initial data, and solutions behave like the fundamental solution of the heat equation with some rate. The potential $W(x) sim log |x|$ for $|x| gg 1$ appears as the natural limiting case when the intermediate asymptotics change. In order to obtain such a result, we produce uniform-in-time estimates in a suitable rescaled change of variables for the entropy, the second moment, Sobolev norms and the $C^alpha$ regularity with a novel approach for this family of equations using modulus of continuity techniques.
We propose and analyze an optimal mass transport method for a random genetic drift problem driven by a Moran process under weak-selection. The continuum limit, formulated as a reaction-advection-diffusion equation known as the Kimura equation, inherits degenerate diffusion from the discrete stochastic process that conveys to the blow-up into Dirac-delta singularities hence brings great challenges to both the analytical and numerical studies. The proposed numerical method can quantitatively capture to the fullest possible extent the development of Dirac-delta singularities for genetic segregation on one hand, and preserves several sets of biologically relevant and computationally favored properties of the random genetic drift on the other. Moreover, the numerical scheme exponentially converges to the unique numerical stationary state in time at a rate independent of the mesh size up to a mesh error. Numerical evidence is given to illustrate and support these properties, and to demonstrate the spatio-temporal dynamics of random generic drift.
We consider density solutions for gradient flow equations of the form $u_t = abla cdot ( gamma(u) abla mathrm N(u))$, where $mathrm N$ is the Newtonian repulsive potential in the whole space $mathbb R^d$ with the nonlinear convex mobility $gamma(u)=u^alpha$, and $alpha>1$. We show that solutions corresponding to compactly supported initial data remain compactly supported for all times leading to moving free boundaries as in the linear mobility case $gamma(u)=u$. For linear mobility it was shown that there is a special solution in the form of a disk vortex of constant intensity in space $u=c_1t^{-1}$ supported in a ball that spreads in time like $c_2t^{1/d}$, thus showing a discontinuous leading front or shock. Our present results are in sharp contrast with the case of concave mobilities of the form $gamma(u)=u^alpha$, with $0<alpha<1$ studied in [9]. There, we developed a well-posedness theory of viscosity solutions that are positive everywhere and moreover display a fat tail at infinity. Here, we also develop a well-posedness theory of viscosity solutions that in the radial case leads to a very detail analysis allowing us to show a waiting time phenomena. This is a typical behavior for nonlinear degenerate diffusion equations such as the porous medium equation. We will also construct explicit self-similar solutions exhibiting similar vortex-like behaviour characterizing the long time asymptotics of general radial solutions under certain assumptions. Convergent numerical schemes based on the viscosity solution theory are proposed analysing their rate of convergence. We complement our analytical results with numerical simulations ilustrating the proven results and showcasing some open problems.
This paper reviews different numerical methods for specific examples of Wasserstein gradient flows: we focus on nonlinear Fokker-Planck equations,but also discuss discretizations of the parabolic-elliptic Keller-Segel model and of the fourth order thin film equation. The methods under review are of Lagrangian nature, that is, the numerical approximations trace the characteristics of the underlying transport equation rather than solving the evolution equation for the mass density directly. The two main approaches are based on integrating the equation for the Lagrangian maps on the one hand, and on solution of coupled ODEs for individual mass particles on the other hand.
We show how to obtain general nonlinear aggregation-diffusion models, including Keller-Segel type models with nonlinear diffusions, as relaxations from nonlocal compressible Euler-type hydrodynamic systems via the relative entropy method. We discuss the assumptions on the confinement and interaction potentials depending on the relative energy of the free energy functional allowing for this relaxation limit to hold. We deal with weak solutions for the nonlocal compressible Euler-type systems and strong solutions for the limiting aggregation-diffusion equations. Finally, we show the existence of weak solutions to the nonlocal compressible Euler-type systems satisfying the needed properties for completeness sake.
We show that the Keller-Segel model in one dimension with Neumann boundary conditions and quadratic cellular diffusion has an intricate phase transition diagram depending on the chemosensitivity strength. Explicit computations allow us to find a myriad of symmetric and asymmetric stationary states whose stability properties are mostly studied via free energy decreasing numerical schemes. The metastability behavior and staircased free energy decay are also illustrated via these numerical simulations.
Kaniadakis and Quarati (1994) proposed a Fokker--Planck equation with quadratic drift as a PDE model for the dynamics of bosons in the spatially homogeneous setting. It is an open question whether this equation has solutions exhibiting condensates in finite time. The main analytical challenge lies in the continuation of exploding solutions beyond their first blow-up time while having a linear diffusion term. We present a thoroughly validated time-implicit numerical scheme capable of simulating solutions for arbitrarily large time, and thus enabling a numerical study of the condensation process in the Kaniadakis--Quarati model. We show strong numerical evidence that above the critical mass rotationally symmetric solutions of the Kaniadakis--Quarati model in 3D form a condensate in finite time and converge in entropy to the unique minimiser of the natural entropy functional at an exponential rate. Our simulations further indicate that the spatial blow-up profile near the origin follows a universal power law and that transient condensates can occur for sufficiently concentrated initial data.
We consider a class of Fokker--Planck equations with linear diffusion and superlinear drift enjoying a formal Wasserstein-like gradient flow structure with convex mobility function. In the drift-dominant regime, the equations have a finite critical mass above which the measure minimising the associated entropy functional displays a singular component. Our approach, which addresses the one-dimensional case, is based on a reformulation of the problem in terms of the pseudo-inverse distribution function. Motivated by the structure of the equation in the new variables, we establish a general framework for global-in-time existence, uniqueness and regularity of monotonic viscosity solutions to a class of nonlinear degenerate (resp. singular) parabolic equations, using as a key tool comparison principles and maximum arguments. We then focus on a specific equation and study in more detail the regularity and dynamics of solutions. In particular, blow-up behaviour, formation of condensates (i.e. Dirac measures at zero) and long-time asymptotics are investigated. As a consequence, in the mass-supercritical case, solutions will blow up in $L^infty$ in finite time and---understood in a generalised, measure sense---they will eventually have condensate. We further show that the singular part of the measure solution does in general interact with the density and that condensates can be transient. The equations considered are motivated by a model for bosons introduced by Kaniadakis and Quarati (1994), which has a similar entropy structure and a critical mass if $dge3$.
Following the paradigm set by attraction-repulsion-alignment schemes, a myriad of individual based models have been proposed to calculate the evolution of abstract agents. While the emergent features of many agent systems have been described astonishingly well with force-based models, this is not the case for pedestrians. Many of the classical schemes have failed to capture the fine detail of crowd dynamics, and it is unlikely that a purely mechanical model will succeed. As a response to the mechanistic literature, we will consider a model for pedestrian dynamics that attempts to reproduce the rational behaviour of individual agents through the means of anticipation. Each pedestrian undergoes a two-step time evolution based on a perception stage and a decision stage. We will discuss the validity of this game theoretical based model in regimes with varying degrees of congestion, ultimately presenting a correction to the mechanistic model in order to achieve realistic high-density dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا