Do you want to publish a course? Click here

Vortex formation for a non-local interaction model with Newtonian repulsion and superlinear mobility

85   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider density solutions for gradient flow equations of the form $u_t = abla cdot ( gamma(u) abla mathrm N(u))$, where $mathrm N$ is the Newtonian repulsive potential in the whole space $mathbb R^d$ with the nonlinear convex mobility $gamma(u)=u^alpha$, and $alpha>1$. We show that solutions corresponding to compactly supported initial data remain compactly supported for all times leading to moving free boundaries as in the linear mobility case $gamma(u)=u$. For linear mobility it was shown that there is a special solution in the form of a disk vortex of constant intensity in space $u=c_1t^{-1}$ supported in a ball that spreads in time like $c_2t^{1/d}$, thus showing a discontinuous leading front or shock. Our present results are in sharp contrast with the case of concave mobilities of the form $gamma(u)=u^alpha$, with $0<alpha<1$ studied in [9]. There, we developed a well-posedness theory of viscosity solutions that are positive everywhere and moreover display a fat tail at infinity. Here, we also develop a well-posedness theory of viscosity solutions that in the radial case leads to a very detail analysis allowing us to show a waiting time phenomena. This is a typical behavior for nonlinear degenerate diffusion equations such as the porous medium equation. We will also construct explicit self-similar solutions exhibiting similar vortex-like behaviour characterizing the long time asymptotics of general radial solutions under certain assumptions. Convergent numerical schemes based on the viscosity solution theory are proposed analysing their rate of convergence. We complement our analytical results with numerical simulations ilustrating the proven results and showcasing some open problems.

rate research

Read More

The aim of this paper is to further develop mathematical models for bleb formation in cells, including cell-membrane interactions with linker proteins. This leads to nonlinear reaction-diffusion equations on a surface coupled to fluid dynamics in the bulk. We provide a detailed mathematical analysis and investigate some singular limits of the model, connecting it to previous literature. Moreover, we provide numerical simulations in different scenarios, confirming that the model can reproduce experimental results on bleb initation.
142 - Ruiwen Shu , Eitan Tadmor 2020
We investigate the large time behavior of multi-dimensional aggregation equations driven by Newtonian repulsion, and balanced by radial attraction and confinement. In case of Newton repulsion with radial confinement we quantify the algebraic convergence decay rate towards the unique steady state. To this end, we identify a one-parameter family of radial steady states, and prove dimension-dependent decay rate in energy and 2-Wassertein distance, using a comparison with properly selected radial steady states. We also study Newtonian repulsion and radial attraction. When the attraction potential is quadratic it is known to coincide with quadratic confinement. Here we study the case of perturbed radial quadratic attraction, proving that it still leads to one-parameter family of unique steady states. It is expected that this family to serve for a corresponding comparison argument which yields algebraic convergence towards steady repulsive-attractive solutions.
We consider a class of Fokker--Planck equations with linear diffusion and superlinear drift enjoying a formal Wasserstein-like gradient flow structure with convex mobility function. In the drift-dominant regime, the equations have a finite critical mass above which the measure minimising the associated entropy functional displays a singular component. Our approach, which addresses the one-dimensional case, is based on a reformulation of the problem in terms of the pseudo-inverse distribution function. Motivated by the structure of the equation in the new variables, we establish a general framework for global-in-time existence, uniqueness and regularity of monotonic viscosity solutions to a class of nonlinear degenerate (resp. singular) parabolic equations, using as a key tool comparison principles and maximum arguments. We then focus on a specific equation and study in more detail the regularity and dynamics of solutions. In particular, blow-up behaviour, formation of condensates (i.e. Dirac measures at zero) and long-time asymptotics are investigated. As a consequence, in the mass-supercritical case, solutions will blow up in $L^infty$ in finite time and---understood in a generalised, measure sense---they will eventually have condensate. We further show that the singular part of the measure solution does in general interact with the density and that condensates can be transient. The equations considered are motivated by a model for bosons introduced by Kaniadakis and Quarati (1994), which has a similar entropy structure and a critical mass if $dge3$.
The aim of this paper is to prove the existence of minimizers for a variational problem involving the minimization under volume constraint of the sum of the perimeter and a non-local energy of Wasserstein type. This extends previous partial results to the full range of parameters. We also show that in the regime where the perimeter is dominant, the energy is uniquely minimized by balls.
We consider the two dimensional Schrodinger equation with time dependent delta potential, which represents a model for the dynamics of a quantum particle subject to a point interaction whose strength varies in time. First, we prove global well-posedness of the associated Cauchy problem under general assumptions on the potential and on the initial datum. Then, for a monochromatic periodic potential (which also satisfies a suitable no-resonance condition) we investigate the asymptotic behavior of the survival probability of a bound state of the time-independent problem. Such probability is shown to have a time decay of order $mathcal{O}(t^{-1})$, up to exponentially fast decaying terms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا