Do you want to publish a course? Click here

Numerical study of Bose-Einstein condensation in the Kaniadakis-Quarati model for bosons

377   0   0.0 ( 0 )
 Added by Katharina Hopf
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Kaniadakis and Quarati (1994) proposed a Fokker--Planck equation with quadratic drift as a PDE model for the dynamics of bosons in the spatially homogeneous setting. It is an open question whether this equation has solutions exhibiting condensates in finite time. The main analytical challenge lies in the continuation of exploding solutions beyond their first blow-up time while having a linear diffusion term. We present a thoroughly validated time-implicit numerical scheme capable of simulating solutions for arbitrarily large time, and thus enabling a numerical study of the condensation process in the Kaniadakis--Quarati model. We show strong numerical evidence that above the critical mass rotationally symmetric solutions of the Kaniadakis--Quarati model in 3D form a condensate in finite time and converge in entropy to the unique minimiser of the natural entropy functional at an exponential rate. Our simulations further indicate that the spatial blow-up profile near the origin follows a universal power law and that transient condensates can occur for sufficiently concentrated initial data.



rate research

Read More

A new method of cooling positronium down is proposed to realize Bose-Einstein condensation of positronium. We perform detail studies about three processes (1) thermalization processes between positronium and silica walls of a cavity, (2) Ps-Ps scatterings and (3) Laser cooling. The thermalization process is shown to be not sufficient for BEC. Ps-Ps collision is also shown to make a big effect on the cooling performance. We combine both methods and establish an efficient cooling for BEC. We also propose a new optical laser system for the cooling.
171 - M. C. Pugh , D. Yan , F. P. Dawson 2019
The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions (PNP-FBV) describe ion transport with Faradaic reactions and have applications in a wide variety of fields. Using an adaptive time-stepper based on a second-order variable step-size, semi-implicit, backward differentiation formula (VSSBDF2), we observe that when the underlying dynamics is one that would have the solutions converge to a steady state solution, the adaptive time-stepper produces solutions that nearly converge to the steady state and that, simultaneously, the time-step sizes stabilize at a limiting size $dt_infty$. Linearizing the SBDF2 scheme about the steady state solution, we demonstrate that the linearized scheme is conditionally stable and that this is the cause of the adaptive time-steppers behaviour. Mesh-refinement, as well as a study of the eigenvectors corresponding to the critical eigenvalues, demonstrate that the conditional stability is not due to a time-step constraint caused by high-frequency contributions. We study the stability domain of the linearized scheme and find that it can have corners as well as jump discontinuities.
In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary anymore as the mass conservation and momentum conservation then form a closed system. Further, the total energy acts as a convex mathematical entropy function for the polytropic Euler equations. The polytropic equation of state gives the pressure as a scaled power law of the density in terms of the adiabatic index $gamma$. As such, there are important limiting cases contained within the polytropic model like the isothermal Euler equations ($gamma=1$) and the shallow water equations ($gamma=2$). We first mimic the continuous entropy analysis on the discrete level in a finite volume context to get special numerical flux functions. Next, these numerical fluxes are incorporated into a particular discontinuous Galerkin (DG) spectral element framework where derivatives are approximated with summation-by-parts operators. This guarantees a high-order accurate DG numerical approximation to the polytropic Euler equations that is also consistent to its auxiliary total energy behavior. Numerical examples are provided to verify the theoretical derivations, i.e., the entropic properties of the high order DG scheme.
We develop a general framework for designing conservative numerical methods based on summation by parts operators and split forms in space, combined with relaxation Runge-Kutta methods in time. We apply this framework to create new classes of fully-discrete conservative methods for several nonlinear dispersive wave equations: Benjamin-Bona-Mahony (BBM), Fornberg-Whitham, Camassa-Holm, Degasperis-Procesi, Holm-Hone, and the BBM-BBM system. These full discretizations conserve all linear invariants and one nonlinear invariant for each system. The spatial semidiscretizations include finite difference, spectral collocation, and both discontinuous and continuous finite element methods. The time discretization is essentially explicit, using relaxation Runge-Kutta methods. We implement some specific schemes from among the derived classes, and demonstrate their favorable properties through numerical tests.
In low-density or high-temperature plasmas, Compton scattering is the dominant process responsible for energy transport. Kompaneets in 1957 derived a non-linear degenerate parabolic equation for the photon energy distribution. In this paper we consider a simplified model obtained by neglecting diffusion of the photon number density in a particular way. We obtain a non-linear hyperbolic PDE with a position-dependent flux, which permits a one-parameter family of stationary entropy solutions to exist. We completely describe the long-time dynamics of each non-zero solution, showing that it approaches some non-zero stationary solution. While the total number of photons is formally conserved, if initially large enough it necessarily decreases after finite time through an out-flux of photons with zero energy. This corresponds to formation of a Bose-Einstein condensate, whose mass we show can only increase with time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا