ﻻ يوجد ملخص باللغة العربية
Millimeter observations of the galactic source of relativistic ejections GRS 1915+105 (Mirabel & Rodriguez 1994) are consistent with this source being at a kinematic distance D = 12.5 +/- 1.5 kpc from the Sun, behind the core of a molecular cloud at 9.4 +/- 0.2 kpc. At this distance, GRS 1915+105, frequently radiating nearly 3 x 10^{38} erg/s in the X-rays, becomes the most luminous X-ray source in the Galaxy. The total hydrogen column density Nh = 4.7 +/- 0.2 x 10^{22} cm-2 along the line of sight corresponds to a visual absorption Av = 26.5 +/- 1 magnitude. The infrared counterpart of GRS 1915+105 exhibits in the 1.2 micrometre - 2.2 micrometre band variations of nearly 1 magnitude in a few hours and of nearly 2 magnitudes over longer intervals of time. In the infrared, GRS 1915+105 is strikingly similar to SS 433, and unlike any other known stellar source in the Galaxy. The infrared resemblance in absolute magnitude, color, and time variability, between these two sources of relativistic ejections suggests that GRS 1915+105, as SS 433, consists of a collapsed object (neutron star or black hole) with a thick accretion disk in a high-mass-luminous binary system.
We present data from the first of six monitoring Open Time observations of GRS 1915+105 undertaken with the orbiting INTEGRAL satellite. The source was clearly detected with all three X-ray and gamma-ray instruments on board. GRS 1915+105 was in a hi
We present mid-infrared (4-18 micron) observations of the microquasar GRS 1915+105 obtained with ISOCAM, the camera on board the Infrared Space Observatory (ISO), in 1996 April and 1997 October. The first observation probably occurred during a flarin
We report preliminary results of mid-infrared (MIR) and X-ray observations of GRS 1915+105 that we carried out between 2004 October 2 and 2006 June 5. Our main goals were to study its variability, to detect the presence of dust, and to investigate th
We present the result of multi-wavelength observations of the microquasar GRS 1915+105 in a plateau state with a luminosity of ~7.5x10^{38) erg s-1 (~40% L_Edd), conducted simultaneously with the INTEGRAL and RXTE satellites, the ESO/NTT, the Ryle Te
We report infrared observations of the microquasar GRS 1915+105 using the NICMOS instrument of the Hubble Space Telescope during 9 visits in April-June 2003. During epochs of high X-ray/radio activity near the beginning and end of this period, we fin