ﻻ يوجد ملخص باللغة العربية
We report infrared observations of the microquasar GRS 1915+105 using the NICMOS instrument of the Hubble Space Telescope during 9 visits in April-June 2003. During epochs of high X-ray/radio activity near the beginning and end of this period, we find that the $1.87 $um infrared flux is generally low ($sim 2$ mJy) and relatively steady. However, during the X-ray/radio ``plateau state between these epochs, we find that the infrared flux is significantly higher ($sim 4-6$ mJy), and strongly variable. In particular, we find events with amplitudes $sim 20-30$% occurring on timescales of $sim 10-20$s (e-folding timescales of $sim 30$s). These flickering timescales are several times faster than any previously-observed infrared variability in GRS 1915+105 and the IR variations exceed corresponding X-ray variations at the same ($sim 8s$) timescale. These results suggest an entirely new type of infrared variability from this object. Based on the properties of this flickering, we conclude that it arises in the plateau-state jet outflow itself, at a distance $<2.5$ AU from the accretion disk. We discuss the implications of this work and the potential of further flickering observations for understanding jet formation around black holes.
We present simultaneous infrared and X-ray observations of the Galactic microquasar GRS 1915+105 using the Palomar 5-m telescope and Rossi X-ray Timing Explorer on July 10, 1998 UT. Over the course of 5 hours, we observed 6 faint infrared (IR) flares
We present the international collaboration MINE (Multi-lambda Integral NEtwork) aimed at conducting multi-wavelength observations of X-ray binaries and microquasars simultaneously with the INTEGRAL gamma-ray satellite. We will focus on the 2003 March
We present data from the first of six monitoring Open Time observations of GRS 1915+105 undertaken with the orbiting INTEGRAL satellite. The source was clearly detected with all three X-ray and gamma-ray instruments on board. GRS 1915+105 was in a hi
We report preliminary results of mid-infrared (MIR) and X-ray observations of GRS 1915+105 that we carried out between 2004 October 2 and 2006 June 5. Our main goals were to study its variability, to detect the presence of dust, and to investigate th
Millimeter observations of the galactic source of relativistic ejections GRS 1915+105 (Mirabel & Rodriguez 1994) are consistent with this source being at a kinematic distance D = 12.5 +/- 1.5 kpc from the Sun, behind the core of a molecular cloud at