ﻻ يوجد ملخص باللغة العربية
Transport equation of the galactic cosmic ray (GCR) is numerically solved for qA>0 and qA<0 based on the stochastic differential equation (SDE) method. We have developed a fully time-dependent and three-dimensional code adapted for the wavy heliospheric current sheet (HCS). Results anticipated by the drift pattern are obtained for sample trajectories and distributions of arrival points at the heliospheric boundary for GCR protons. Our simulation reproduced a 22-year cycle of solar modulation which is qualitatively consistent with observations. Energy spectra of protons at 1 AU are calculated and compared with the observation by BESS.
We discuss two extraordinary increases of cosmic ray intensity observed by Voyager 1 in the last 1.1 AU before heliopause crossing, Aug 2012 at 121.7 AU. The two increases are roughly similar in amplitude and result in a total increase of cosmic ray
The 11-year and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere are studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parkers transport equations, the model incorporates
We study the effects of drift motions and the advection by a Galactic wind on the propagation of cosmic rays in the Galaxy. We employ a simplified magnetic field model, based on (and similar to) the Jansson-Farrar model for the Galactic magnetic fiel
It is shown that the relativistic jet, emitted from the center of the Galaxy during its activity, possessed power and energy spectrum of accelerated protons sufficient to explain the current cosmic rays distribution in the Galaxy. Proton acceleration
The existence of the spectral break around $sim 3 times 10^{15}$ eV in the cosmic ray spectrum (referred to as the `knee) is one of the biggest questions in cosmic ray astrophysics. At the same time, the origin of cosmic rays above the knee energies