ﻻ يوجد ملخص باللغة العربية
The isospin splitting of the in-medium $NNrightarrow NDelta$ cross sections in asymmetric nuclear medium are investigated in the framework of the one-boson exchange model by including $delta$ and $rho$ mesons. Our results show that the that the correction factors $R=sigma_{ NNrightarrow NDelta}^*/sigma_{NNrightarrow NDelta}^{text{free}}$ have $R_{pp to nDelta ^{++}} < R_{nn to pDelta ^{-}}$ and $R_{NN to NDelta ^{+}} <R_{NN to NDelta ^{0}}$ by using the without-$delta$ sets. By including the $delta$ meson, it appears the totally opposite results in the $R$ for different channels, i.e., $R_{pp to nDelta ^{++}} > R_{nn to pDelta ^{-}}$ and $R_{NN to NDelta ^{+}} >R_{NN to NDelta ^{0}}$.
We explore the influence of in-medium nucleon-nucleon cross section, symmetry potential and impact parameter on isospin sensitive observables in intermediate-energy heavy-ion collisions with the ImQMD05 code, a modified version of Quantum Molecular D
In this paper, the in-medium $NNrightarrow NDelta$ cross section is calculated in the framework of the one-boson exchange model by including the isovector mesons, i.e. $delta$ and $rho$ mesons. Due to the isospin exchange in the $NNrightarrow NDelta$
Using the isospin dependent quantum molecular dynamics model, we study the effect of charge asymmetry and isospin dependent cross-section on different aspects of elliptical flow. Simulations have been carried out for the reactions of $^{124}X_{m}+^{1
Using the isospin dependent quantum molecular dynamics model, we study the effect of charge asymmetry and isospin dependent cross-section on nuclear stopping and multiplicity of free nucleons and LMFs. Simulations were carried out for the reactions $
Results for the $pi + N to Lambda, Sigma + K$ reactions in nuclear matter of Ref. nucl-th/0004011 are presented. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-fi