ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of charge asymmetry and isospin dependent cross-section on nuclear stopping

202   0   0.0 ( 0 )
 نشر من قبل Anupriya Jain
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the isospin dependent quantum molecular dynamics model, we study the effect of charge asymmetry and isospin dependent cross-section on nuclear stopping and multiplicity of free nucleons and LMFs. Simulations were carried out for the reactions $^{124}X_{m}+^{124}X_{m}$, where m varies from 47 to 59 and for $^{40}Y_{n}+^{40}Y_{n}$, where n varies from 14 to 23. Our study shows that nuclear stopping as well as the production of LMFs depend strongly on the isospin of the cross-section.



قيم البحث

اقرأ أيضاً

Using the isospin dependent quantum molecular dynamics model, we study the effect of charge asymmetry and isospin dependent cross-section on different aspects of elliptical flow. Simulations have been carried out for the reactions of $^{124}X_{m}+^{1 24}X_{m}$, where m = (47, 50, 53, 57 and 59) and $^{40}X_{n}+^{40}X_{n}$, where n= (14, 16, 18, 21 and 23). Our study shows that elliptical flow depend strongly on the isospin of cross-section. The transition energy remains almost constant with increase in N/Z of the system. A good agreement is obtained with experimental measurements.
By considering three different Nucleon-Nucleon (NN) elastic differential cross sections: the Cugnon emph{et al.} parameterized differential cross section [Nucl. Instrum. Methods Phys. Res., Sect. textbf{B111}, 215 (1996)], and the differential cross section derived from the collision term of the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation proposed by Mao emph{et al.} [Z. Phys. A {bf 347}, 173 (1994)], as well as the isotropic differential cross section, within the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the influence of the differential elastic NN cross section on various observables (e.g., nuclear stopping, both the rapidity and transverse-velocity dependence of the directed and elliptic flows) in Au+Au collisions at beam energies 150, 250, 400, and 800 MeV$/$nucleon is investigated. By comparing calculations with those three differential cross sections, it is found that the nuclear stopping power, the directed and elliptic flows are affected to some extent by the differential cross sections, and the impact of differential cross section on those observables becomes more visible as the beam energy increases. The effect on the elliptic flow difference $v_{2}^{n}$-$v_{2}^{H}$ and ratio $v_{2}^{n}$/$v_{2}^{H}$ of neutrons versus hydrogen isotopes ($Z=1$), which have been used as sensitive observables for probing nuclear symmetry energy at high densities, is weak.
113 - Aman D. Sood 2011
We aim to explore the effect of isospin dependence of cross section on symmetric and neutron rich system. We also aim to explore whether the analysis is affacted if one discusses in terms of $E_{bal}$ as a function of N/Z or N/A of the system.
In this paper, the in-medium $NNrightarrow NDelta$ cross section is calculated in the framework of the one-boson exchange model by including the isovector mesons, i.e. $delta$ and $rho$ mesons. Due to the isospin exchange in the $NNrightarrow NDelta$ process, the vector self-energies of the outgoing particles are modified relative to the incoming particles in isospin asymmetric nuclear matter, and it leads to the effective energies of the incoming $NN$ pair being different from the outgoing $NDelta$ pair. This effect is investigated in the calculation of the in-medium $NNrightarrow NDelta$ cross section. With the corrected energy conservation, the cross sections of the $Delta^{++}$ and $Delta^+$ channels are suppressed, and the cross sections of the $Delta^0$ and $Delta^-$ channels are enhanced relative to the results obtained without properly considering the potential energy changes. Our results further confirm the dependence of medium correction factor, $R=sigma_{ NNrightarrow NDelta}^*/sigma_{NNrightarrow NDelta}^{text{free}}$, on the charge state of $NNrightarrow NDelta$ especially around the threshold energy, but the isospin splitting of medium correction factor $R$ becomes weak at high beam energies.
The in-medium $NNrightarrow NDelta$ cross section and its differential cross section in isospin asymmetric nuclear medium are investigated in the framework of the one-boson exchange model by including the isovector mesons, i.e., $delta$ and $rho$ mes ons. Our results show that the in-medium $NNrightarrow NDelta$ cross sections are suppressed with density increasing, and the differential cross sections become isotropic with the density increasing at the beam energy around the $Delta$ threshold energy. The isospin splitting on the medium correction factor, $R=sigma_{ NNrightarrow NDelta}^*/sigma_{NNrightarrow NDelta}^{text{free}}$ is observed for different channels of $NNto NDelta$, especially around the threshold energy for all the effective Lagrangian parameters. By analyzing the selected effective Lagrangian parameters, our results show that the larger effective mass is, the weaker medium correction $R$ is.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا