ترغب بنشر مسار تعليمي؟ اضغط هنا

Legio: Fault Resiliency for Embarrassingly Parallel MPI Applications

76   0   0.0 ( 0 )
 نشر من قبل Roberto Rocco
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the increasing size of HPC machines, the fault presence is becoming an eventuality that applications must face. Natively, MPI provides no support for the execution past the detection of a fault, and this is becoming more and more constraining. With the introduction of ULFM (User Level Fault Mitigation library), it has been provided with a possible way to overtake a fault during the application execution at the cost of code modifications. ULFM is intrusive in the application and requires also a deep understanding of its recovery procedures. In this paper we propose Legio, a framework that lowers the complexity of introducing resiliency in an embarrassingly parallel MPI application. By hiding ULFM behind the MPI calls, the library is capable to expose resiliency features to the application in a transparent manner thus removing any integration effort. Upon fault, the failed nodes are discarded and the execution continues only with the non-failed ones. A hierarchical implementation of the solution has been also proposed to reduce the overhead of the repair process when scaling towards a large number of nodes. We evaluated our solutions on the Marconi100 cluster at CINECA, showing that the overhead introduced by the library is negligible and it does not limit the scalability properties of MPI. Moreover, we also integrated the solution in real-world applications to further prove its robustness by injecting faults.



قيم البحث

اقرأ أيضاً

Analytic, first-principles performance modeling of distributed-memory parallel codes is notoriously imprecise. Even for applications with extremely regular and homogeneous compute-communicate phases, simply adding communication time to computation ti me does often not yield a satisfactory prediction of parallel runtime due to deviations from the expected simple lockstep pattern caused by system noise, variations in communication time, and inherent load imbalance. In this paper, we highlight the specific cases of provoked and spontaneous desynchronization of memory-bound, bulk-synchronous pure MPI and hybrid MPI+OpenMP programs. Using simple microbenchmarks we observe that although desynchronization can introduce increased waiting time per process, it does not necessarily cause lower resource utilization but can lead to an increase in available bandwidth per core. In case of significant communication overhead, even natural noise can shove the system into a state of automatic overlap of communication and computation, improving the overall time to solution. The saturation point, i.e., the number of processes per memory domain required to achieve full memory bandwidth, is pivotal in the dynamics of this process and the emerging stable wave pattern. We also demonstrate how hybrid MPI-OpenMP programming can prevent desirable desynchronization by eliminating the bandwidth bottleneck among processes. A Chebyshev filter diagonalization application is used to demonstrate some of the observed effects in a realistic setting.
We present a simple library which equips MPI implementations with truly asynchronous non-blocking point-to-point operations, and which is independent of the underlying communication infrastructure. It utilizes the MPI profiling interface (PMPI) and t he MPI_THREAD_MULTIPLE thread compatibility level, and works with curre
Performance and energy are the two most important objectives for optimisation on modern parallel platforms. Latest research demonstrated the importance of workload distribution as a decision variable in the bi-objective optimisation for performance a nd energy on homogeneous multicore clusters. We show in this work that bi-objective optimisation for performance and energy on heterogeneous processors results in a large number of Pareto-optimal optimal solutions (workload distributions) even in the simple case of linear performance and energy profiles. We then study performance and energy profiles of real-life data-parallel applications and find that their shapes are non-linear, complex and non-smooth. We, therefore, propose an efficient and exact global optimisation algorithm, which takes as an input most general discrete performance and dynamic energy profiles of the heterogeneous processors and solves the bi-objective optimisation problem. The algorithm is also used as a building block to solve the bi-objective optimisation problem for performance and total energy. We also propose a novel methodology to build discrete dynamic energy profiles of individual computing devices, which are input to the algorithm. The methodology is based purely on system-level measurements and addresses the fundamental challenge of accurate component-level energy modelling of a hybrid data-parallel application running on a heterogeneous platform integrating CPUs and accelerators. We experimentally validate the proposed method using two data-parallel applications, matrix multiplication and 2D fast Fourier transform (2D-FFT).
Scaling supercomputers comes with an increase in failure rates due to the increasing number of hardware components. In standard practice, applications are made resilient through checkpointing data and restarting execution after a failure occurs to re sume from the latest check-point. However, re-deploying an application incurs overhead by tearing down and re-instating execution, and possibly limiting checkpointing retrieval from slow permanent storage. In this paper we present Reinit++, a new design and implementation of the Reinit approach for global-restart recovery, which avoids application re-deployment. We extensively evaluate Reinit++ contrasted with the leading MPI fault-tolerance approach of ULFM, implementing global-restart recovery, and the typical practice of restarting an application to derive new insight on performance. Experimentation with three different HPC proxy applications made resilient to withstand process and node failures shows that Reinit++ recovers much faster than restarting, up to 6x, or ULFM, up to 3x, and that it scales excellently as the number of MPI processes grows.
Big data applications and analytics are employed in many sectors for a variety of goals: improving customers satisfaction, predicting market behavior or improving processes in public health. These applications consist of complex software stacks that are often run on cloud systems. Predicting execution times is important for estimating the cost of cloud services and for effectively managing the underlying resources at runtime. Machine Learning (ML), providing black box solutions to model the relationship between application performance and system configuration without requiring in-detail knowledge of the system, has become a popular way of predicting the performance of big data applications. We investigate the cost-benefits of using supervised ML models for predicting the performance of applications on Spark, one of todays most widely used frameworks for big data analysis. We compare our approach with textit{Ernest} (an ML-based technique proposed in the literature by the Spark inventors) on a range of scenarios, application workloads, and cloud system configurations. Our experiments show that Ernest can accurately estimate the performance of very regular applications, but it fails when applications exhibit more irregular patterns and/or when extrapolating on bigger data set sizes. Results show that our models match or exceed Ernests performance, sometimes enabling us to reduce the prediction error from 126-187% to only 5-19%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا