ترغب بنشر مسار تعليمي؟ اضغط هنا

Desynchronization and Wave Pattern Formation in MPI-Parallel and Hybrid Memory-Bound Programs

81   0   0.0 ( 0 )
 نشر من قبل Georg Hager
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Analytic, first-principles performance modeling of distributed-memory parallel codes is notoriously imprecise. Even for applications with extremely regular and homogeneous compute-communicate phases, simply adding communication time to computation time does often not yield a satisfactory prediction of parallel runtime due to deviations from the expected simple lockstep pattern caused by system noise, variations in communication time, and inherent load imbalance. In this paper, we highlight the specific cases of provoked and spontaneous desynchronization of memory-bound, bulk-synchronous pure MPI and hybrid MPI+OpenMP programs. Using simple microbenchmarks we observe that although desynchronization can introduce increased waiting time per process, it does not necessarily cause lower resource utilization but can lead to an increase in available bandwidth per core. In case of significant communication overhead, even natural noise can shove the system into a state of automatic overlap of communication and computation, improving the overall time to solution. The saturation point, i.e., the number of processes per memory domain required to achieve full memory bandwidth, is pivotal in the dynamics of this process and the emerging stable wave pattern. We also demonstrate how hybrid MPI-OpenMP programming can prevent desirable desynchronization by eliminating the bandwidth bottleneck among processes. A Chebyshev filter diagonalization application is used to demonstrate some of the observed effects in a realistic setting.

قيم البحث

اقرأ أيضاً

Due to the increasing size of HPC machines, the fault presence is becoming an eventuality that applications must face. Natively, MPI provides no support for the execution past the detection of a fault, and this is becoming more and more constraining. With the introduction of ULFM (User Level Fault Mitigation library), it has been provided with a possible way to overtake a fault during the application execution at the cost of code modifications. ULFM is intrusive in the application and requires also a deep understanding of its recovery procedures. In this paper we propose Legio, a framework that lowers the complexity of introducing resiliency in an embarrassingly parallel MPI application. By hiding ULFM behind the MPI calls, the library is capable to expose resiliency features to the application in a transparent manner thus removing any integration effort. Upon fault, the failed nodes are discarded and the execution continues only with the non-failed ones. A hierarchical implementation of the solution has been also proposed to reduce the overhead of the repair process when scaling towards a large number of nodes. We evaluated our solutions on the Marconi100 cluster at CINECA, showing that the overhead introduced by the library is negligible and it does not limit the scalability properties of MPI. Moreover, we also integrated the solution in real-world applications to further prove its robustness by injecting faults.
Most distributed-memory bulk-synchronous parallel programs in HPC assume that compute resources are available continuously and homogeneously across the allocated set of compute nodes. However, long one-off delays on individual processes can cause glo bal disturbances, so-called idle waves, by rippling through the system. This process is mainly governed by the communication topology of the underlying parallel code. This paper makes significant contributions to the understanding of idle wave dynamics. We study the propagation mechanisms of idle waves across the ranks of MPI-parallel programs. We present a validated analytic model for their propagation velocity with respect to communication parameters and topology, with a special emphasis on sparse communication patterns. We study the interaction of idle waves with MPI collectives and show that, depending on the implementation, a collective may be transparent to the wave. Finally we analyze two mechanisms of idle wave decay: topological decay, which is rooted in differences in communication characteristics among parts of the system, and noise-induced decay, which is caused by system or application noise. We show that noise-induced decay is largely independent of noise characteristics but depends only on the overall noise power. An analytic expression for idle wave decay rate with respect to noise power is derived. For model validation we use microbenchmarks and stencil algorithms on three different supercomputing platforms.
We present a simple library which equips MPI implementations with truly asynchronous non-blocking point-to-point operations, and which is independent of the underlying communication infrastructure. It utilizes the MPI profiling interface (PMPI) and t he MPI_THREAD_MULTIPLE thread compatibility level, and works with curre
Complex applications running on multicore processors show a rich performance phenomenology. The growing number of cores per ccNUMA domain complicates performance analysis of memory-bound code since system noise, load imbalance, or task-based programm ing models can lead to thread desynchronization. Hence, the simplifying assumption that all cores execute the same loop can not be upheld. Motivated by observations on plain and modifi
As an increasing number of leadership-class systems embrace GPU accelerators in the race towards exascale, efficient communication of GPU data is becoming one of the most critical components of high-performance computing. For developers of parallel p rogramming models, implementing support for GPU-aware communication using native APIs for GPUs such as CUDA can be a daunting task as it requires considerable effort with little guarantee of performance. In this work, we demonstrate the capability of the Unified Communication X (UCX) framework to compose a GPU-aware communication layer that serves multiple parallel programming models of the Charm++ ecosystem: Charm++, Adaptive MPI (AMPI), and Charm4py. We demonstrate the performance impact of our designs with microbenchmarks adapted from the OSU benchmark suite, obtaining improvements in latency of up to 10.2x, 11.7x, and 17.4x in Charm++, AMPI, and Charm4py, respectively. We also observe increases in bandwidth of up to 9.6x in Charm++, 10x in AMPI, and 10.5x in Charm4py. We show the potential impact of our designs on real-world applications by evaluating a proxy application for the Jacobi iterative method, improving the communication performance by up to 12.4x in Charm++, 12.8x in AMPI, and 19.7x in Charm4py.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا