ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomaly Detection in Astronomical Images with Generative Adversarial Networks

268   0   0.0 ( 0 )
 نشر من قبل Kate Storey-Fisher
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an anomaly detection method using Wasserstein generative adversarial networks (WGANs) on optical galaxy images from the wide-field survey conducted with the Hyper Suprime-Cam (HSC) on the Subaru Telescope in Hawaii. The WGAN is trained on the entire sample, and learns to generate realistic HSC-like images that follow the distribution of the training data. We identify images which are less well-represented in the generators latent space, and which the discriminator flags as less realistic; these are thus anomalous with respect to the rest of the data. We propose a new approach to characterize these anomalies based on a convolutional autoencoder (CAE) to reduce the dimensionality of the residual differences between the real and WGAN-reconstructed images. We construct a subsample of ~9,000 highly anomalous images from our nearly million object sample, and further identify interesting anomalies within these; these include galaxy mergers, tidal features, and extreme star-forming galaxies. The proposed approach could boost unsupervised discovery in the era of big data astrophysics.

قيم البحث

اقرأ أيضاً

With the advent of future big-data surveys, automated tools for unsupervised discovery are becoming ever more necessary. In this work, we explore the ability of deep generative networks for detecting outliers in astronomical imaging datasets. The mai n advantage of such generative models is that they are able to learn complex representations directly from the pixel space. Therefore, these methods enable us to look for subtle morphological deviations which are typically missed by more traditional moment-based approaches. We use a generative model to learn a representation of expected data defined by the training set and then look for deviations from the learned representation by looking for the best reconstruction of a given object. In this first proof-of-concept work, we apply our method to two different test cases. We first show that from a set of simulated galaxies, we are able to detect $sim90%$ of merging galaxies if we train our network only with a sample of isolated ones. We then explore how the presented approach can be used to compare observations and hydrodynamic simulations by identifying observed galaxies not well represented in the models.
Time series anomalies can offer information relevant to critical situations facing various fields, from finance and aerospace to the IT, security, and medical domains. However, detecting anomalies in time series data is particularly challenging due t o the vague definition of anomalies and said datas frequent lack of labels and highly complex temporal correlations. Current state-of-the-art unsupervised machine learning methods for anomaly detection suffer from scalability and portability issues, and may have high false positive rates. In this paper, we propose TadGAN, an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs). To capture the temporal correlations of time series distributions, we use LSTM Recurrent Neural Networks as base models for Generators and Critics. TadGAN is trained with cycle consistency loss to allow for effective time-series data reconstruction. We further propose several novel methods to compute reconstruction errors, as well as different approaches to combine reconstruction errors and Critic outputs to compute anomaly scores. To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one. We compare our approach to 8 baseline anomaly detection methods on 11 datasets from multiple reputable sources such as NASA, Yahoo, Numenta, Amazon, and Twitter. The results show that our approach can effectively detect anomalies and outperform baseline methods in most cases (6 out of 11). Notably, our method has the highest averaged F1 score across all the datasets. Our code is open source and is available as a benchmarking tool.
Acoustic anomaly detection aims at distinguishing abnormal acoustic signals from the normal ones. It suffers from the class imbalance issue and the lacking in the abnormal instances. In addition, collecting all kinds of abnormal or unknown samples fo r training purpose is impractical and timeconsuming. In this paper, a novel Gaussian Mixture Generative Adversarial Network (GMGAN) is proposed under semi-supervised learning framework, in which the underlying structure of training data is not only captured in spectrogram reconstruction space, but also can be further restricted in the space of latent representation in a discriminant manner. Experiments show that our model has clear superiority over previous methods, and achieves the state-of-the-art results on DCASE dataset.
Detecting changed regions in paired satellite images plays a key role in many remote sensing applications. The evolution of recent techniques could provide satellite images with very high spatial resolution (VHR) but made it challenging to apply imag e coregistration, and many change detection methods are dependent on its accuracy.Two images of the same scene taken at different time or from different angle would introduce unregistered objects and the existence of both unregistered areas and actual changed areas would lower the performance of many change detection algorithms in unsupervised condition.To alleviate the effect of unregistered objects in the paired images, we propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate many better coregistered images. In this paper, we show that GAN model can be trained upon a pair of images through using the proposed expanding strategy to create a training set and optimizing designed objective functions. The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy using these generated images explicitly.Compared to other deep learning-based methods, our method is less sensitive to the problem of unregistered images and makes most of the deep learning structure.Experimental results on synthetic images and real data with many different scenes could demonstrate the effectiveness of the proposed approach.
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify those images as anomalies, where the reconstruction error exceeds some threshold. Here we analyze a fundamental problem of this approach when the training set is contaminated with a small fraction of outliers. We find that continued training of autoencoders inevitably reduces the reconstruction error of outliers, and hence degrades the anomaly detection performance. In order to counteract this effect, an adversarial autoencoder architecture is adapted, which imposes a prior distribution on the latent representation, typically placing anomalies into low likelihood-regions. Utilizing the likelihood model, potential anomalies can be identified and rejected already during training, which results in an anomaly detector that is significantly more robust to the presence of outliers during training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا