ﻻ يوجد ملخص باللغة العربية
With the current ongoing debate about fairness, explainability and transparency of machine learning models, their application in high-impact clinical decision-making systems must be scrutinized. We consider a real-life example of risk estimation before surgery and investigate the potential for bias or unfairness of a variety of algorithms. Our approach creates transparent documentation of potential bias so that the users can apply the model carefully. We augment a model-card like analysis using propensity scores with a decision-tree based guide for clinicians that would identify predictable shortcomings of the model. In addition to functioning as a guide for users, we propose that it can guide the algorithm development and informatics team to focus on data sources and structures that can address these shortcomings.
Machine learning and data mining algorithms have been increasingly used recently to support decision-making systems in many areas of high societal importance such as healthcare, education, or security. While being very efficient in their predictive a
Non-invasive and cost effective in nature, the echocardiogram allows for a comprehensive assessment of the cardiac musculature and valves. Despite progressive improvements over the decades, the rich temporally resolved data in echocardiography videos
We present an approximation algorithm that takes a pool of pre-trained models as input and produces from it a cascaded model with similar accuracy but lower average-case cost. Applied to state-of-the-art ImageNet classification models, this yields up
We introduce the framework of continuous-depth graph neural networks (GNNs). Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs where the input-output relationship is determined by a continuum of GNN layers, b
We propose a novel formulation of group fairness in the contextual multi-armed bandit (CMAB) setting. In the CMAB setting a sequential decision maker must at each time step choose an arm to pull from a finite set of arms after observing some context