ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant renormalization of correlation strength in 1T-TaS2 by lattice vibration

290   0   0.0 ( 0 )
 نشر من قبل Zheng Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lattice thermodynamics of a 1T-TaS2 layer, e.g. the spontaneous formation of a sqrt13*sqrt13 commensurate charge density wave (CCDW) and vibrations around the equilibrium position, is calculated by ab initio molecular dynamics. Based on that, we examine how the ground-state electronic structure is renormalized by lattice temperature. We show that the band gap within the density functional theory plus onsite-U correction shrinks by half when the temperature raises from 0 K to 200 K. The gap size reduction is one order of magnitude larger than the temperature variation in energy. This giant temperature dependence is closely related to the CCDW-triggered Mottness in 1T-TaS2, and is expected to result in unconventional thermodynamic properties.

قيم البحث

اقرأ أيضاً

In many transition-metal oxides and dichalcogenides, the electronic and lattice degrees of freedom are strongly coupled, giving rise to remarkable phenomena, such as metal-insulator transition (MIT) and charge-density wave (CDW) order. We study this interplay by tracing the instant electronic structure under ab initio molecular dynamics. Applying this method to a 1T-TaS2 layer, we show that the CDW-triggered Mott gap undergoes a continuous reduction as the lattice temperature raises, despite a nearly constant CDW amplitude. Before the CDW order undergoes a sharp first-order transition around the room temperature, the dynamical CDW fluctuation already shrinks the Mott gap size by half. The gap size reduction is one order of magnitude larger than the lattice temperature variation. Our calculation not only provides an important clue to understand the thermodynamics behavior in 1T-TaS2, but also demonstrates a general approach to quantify the lattice entropy effect in MIT.
The transient optical conductivity of photoexcited 1T-TaS2 is determined over a three-order-of-magnitude frequency range. Prompt collapse and recovery of the Mott gap is observed. However, we find important differences between this transient metallic state and that seen across the thermally-driven insulator-metal transition. Suppressed low-frequency conductivity, Fano phonon lineshapes, and a mid-infrared absorption band point to polaronic transport. This is explained by noting that the photo-induced metallic state of 1T-TaS2 is one in which the Mott gap is melted but the lattice retains its low-temperature symmetry, a regime only accessible by photo-doping.
Two-dimensional layered transition-metal-dichalcogenide compound 1T-TaS2 shows the rare coexistence of charge density wave (CDW) and electron correlation driven Mott transition. In addition, atomic-cluster spins on the triangular lattice of the CDW s tate of 1T-TaS2 give rise to the possibility of the exotic spin-singlet state in which quantum fluctuations of spins are strong enough to prevent any long range magnetic ordering down to absolute zero ( 0 K). We present here the evidences of a glass-like random singlet magnetic state in 1T-TaS2 at low temperatures through a study of temperature and time dependence of magnetization. Comparing the experimental results with a representative canonical spin-glass system Au(1.8%Mn), we show that this glass-like state is distinctly different from the well established canonical spin-glass state.
The vicinity of a Mott insulating phase has constantly been a fertile ground for finding exotic quantum states, most notably the high Tc cuprates and colossal magnetoresistance manganites. The layered transition metal dichalcogenide 1T-TaS2 represent s another intriguing example, in which the Mott insulator phase is intimately entangled with a series of complex charge-density-wave (CDW) orders. More interestingly, it has been recently found that 1T-TaS2 undergoes a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. The nature of the Mott insulator phase and transition mechanism to the conducting state is still under heated debate. Here, by combining scanning tunneling microscopy (STM) measurements and first-principles calculations, we investigate the atomic scale electronic structure of 1T-TaS2 Mott insulator and its evolution to the metallic state upon isovalent substitution of S with Se. We identify two distinct types of orbital textures - one localized and the other extended - and demonstrates that the interplay between them is the key factor that determines the electronic structure. Especially, we show that the continuous evolution of the charge gap visualized by STM is due to the immersion of the localized-orbital-induced Hubbard bands into the extended-orbital-spanned Fermi sea, featuring a unique evolution from a Mott gap to a charge-transfer gap. This new mechanism of orbital-driven Mottness collapse revealed here suggests an interesting route for creating novel electronic state and designing future electronic devices.
Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently very intensively studied examples in this regard are nanometer-thick single crystals of th e layered material 1T-TaS2 , where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here we determine the latter by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of inter-layer molecular orbital dimers, which are a characteristic feature of the insulating phase, as a key mechanism for the non-thermal IMT in 1T-TaS2, which indeed involves a collective transition between two truly long-range ordered electronic crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا