ﻻ يوجد ملخص باللغة العربية
The transient optical conductivity of photoexcited 1T-TaS2 is determined over a three-order-of-magnitude frequency range. Prompt collapse and recovery of the Mott gap is observed. However, we find important differences between this transient metallic state and that seen across the thermally-driven insulator-metal transition. Suppressed low-frequency conductivity, Fano phonon lineshapes, and a mid-infrared absorption band point to polaronic transport. This is explained by noting that the photo-induced metallic state of 1T-TaS2 is one in which the Mott gap is melted but the lattice retains its low-temperature symmetry, a regime only accessible by photo-doping.
The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas
Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently very intensively studied examples in this regard are nanometer-thick single crystals of th
The lattice thermodynamics of a 1T-TaS2 layer, e.g. the spontaneous formation of a sqrt13*sqrt13 commensurate charge density wave (CCDW) and vibrations around the equilibrium position, is calculated by ab initio molecular dynamics. Based on that, we
Two-dimensional layered transition-metal-dichalcogenide compound 1T-TaS2 shows the rare coexistence of charge density wave (CDW) and electron correlation driven Mott transition. In addition, atomic-cluster spins on the triangular lattice of the CDW s
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt los