ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength observations of a bright impact flash during the January 2019 total lunar eclipse

439   0   0.0 ( 0 )
 نشر من قبل Jose Maria Madiedo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss here a lunar impact flash recorded during the total lunar eclipse that occurred on 2019 January 21, at 4h 41m 38.09 +- 0.01 s UT. This is the first time ever that an impact flash is unambiguously recorded during a lunar eclipse and discussed in the scientific literature, and the first time that lunar impact flash observations in more than two wavelengths are reported. The impact event was observed by different instruments in the framework of the MIDAS survey. It was also spotted by casual observers that were taking images of the eclipse. The flash lasted 0.28 seconds and its peak luminosity in visible band was equivalent to the brightness of a mag. 4.2 star. The projectile hit the Moon at the coordinates 29.2 +- 0.3 $^{circ}$S, 67.5 +- 0.4 $^{circ}$W. In this work we have investigated the most likely source of the projectile, and the diameter of the new crater generated by the collision has been calculated. In addition, the temperature of the lunar impact flash is derived from the multiwavelength observations. These indicate that the blackbody temperature of this flash was of about 5700 K.



قيم البحث

اقرأ أيضاً

Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in fro nt of the Sun. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in its polarimetric mode in Stokes IQUV at a spectral resolution of 130000 (0.06 AA). In particular, the spectra cover the red parts of the optical spectrum between 7419-9067 AA . The spectrographs exposure meter was used to obtain a light curve of the lunar eclipse. The brightness of the Moon dimmed by 10.75 mag during umbral eclipse. We found both branches of the O$_2$ A-band almost completely saturated as well as a strong increase of H$_2$O absorption during totality. The deep penumbral spectra show significant excess absorption from the NaI 5890 AA doublet, the CaII infrared triplet around 8600 AA, and the KI line at 7699 AA in addition to several hyper-fine-structure lines of MnI and even from BaII. The detections of the latter two elements are likely due to an untypical solar center-to-limb effect rather than Earths atmosphere. The absorption in CaII and KI remained visible throughout umbral eclipse. A small continuum polarization of the O$_2$ A-band of 0.12% during umbral eclipse was detected at 6.3$sigma$. No line polarization of the O$_2$ A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of $approx$0.2% on the degree of line polarization during transmission through Earths atmosphere and magnetosphere.
The Moons changeable aspect during a lunar eclipse is largely attributable to variations in the refracted unscattered sunlight absorbed by the terrestrial atmosphere that occur as the satellite crosses the Earths shadow. The contribution to the Moons aspect from sunlight scattered at the Earths terminator is generally deemed minor. However, our analysis of a published spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a major component of the measured spectrum at wavelengths shorter than 600 nm. The conclusion is supported by two distinct features, namely the spectrums tail at short wavelengths and the unequal absorption by an oxygen collisional complex at two nearby bands. Our findings are consistent with the presence of the volcanic cloud reported at high northern latitudes following the 7-8 August 2008 eruption in Alaska of the Kasatochi volcano. The cloud both attenuates the unscattered sunlight and enhances moderately the scattered component, thus modifying the contrast between the two contributions.
127 - Enric Palle 2009
Of the 342 planets discovered so far orbiting other stars, 58 transit the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the fingerprints of the Earths ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum.
91 - Paul D. Feldman 2012
We report observations of the lunar helium exosphere made between December 29, 2011, and January 26, 2012, with the Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph on NASAs Lunar Reconnaissance Orbiter Mission (LRO). The observations were made of resonantly scattered He I 584 from illuminated atmosphere against the dark lunar surface on the dawn side of the terminator. We find no or little variation of the derived surface He density with latitude but day-to-day variations that likely reflect variations in the solar wind alpha flux. The 5-day passage of the Moon through the Earths magnetotail results in a factor of two decrease in surface density, which is well explained by model simulations.
Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those h istorically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ~50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا