ﻻ يوجد ملخص باللغة العربية
The presented work investigates the possible formation of terrestrial planets in the habitable zone (HZ) of the exoplanetary system HD 141399. In this system the HZ is located approximately between the planets c (a = 0.7 au) and d (a = 2.1 au). Extensive numerical integrations of the equations of motion in the pure Newtonian framework of small bodies with different initial conditions in the HZ are performed. Our investigations included several steps starting with 500 massless bodies distributed between planets c and d in order to model the development of the disk of small bodies. It turns out that after some 10^6 years a belt-like structure analogue to the main belt inside Jupiter in our Solar System appears. We then proceed with giving the small bodies masses (Moon-mass) and take into account the gravitational interaction between these planetesimal-like objects. The growing of the objects - with certain percentage of water - due to collisions is computed in order to look for the formation of terrestrial planets. We observe that planets form in regions connected to mean motion resonances (MMR). So far there is no observational evidence of terrestrial planets in the system of HD 141399 but from our results we can conclude that the formation of terrestrial planets - even with an appropriate amount of water necessary for being habitable - in the HZ would have been possible.
To reproduce the orbits and masses of the terrestrial planets (analogs) of the solar system, most studies scrutinize simulations for success as a batch. However, there is insufficient discussion in the literature on the likelihood of forming planet a
The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is lo
As part of a national scientific network Pathways to Habitability the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize t
The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The system lacks massive planets and is therefore a potential candidate for having additional low-mass planetary companions. We re-derive Doppler measurements from public HARPS spe
We present the detection of five planets -- Kepler-62b, c, d, e, and f -- of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii, orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4 and 267.3 days, respectively. The outermost planets (Kepler-62e &