ﻻ يوجد ملخص باللغة العربية
We define a scale of Hardy spaces $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$, $pin[1,infty]$, that are invariant under suitable Fourier integral operators of order zero. This builds on work by Smith for $p=1$. We also introduce a notion of off-singularity decay for kernels on the cosphere bundle of $mathbb{R}^{n}$, and we combine this with wave packet transforms and tent spaces over the cosphere bundle to develop a full Hardy space theory for oscillatory integral operators. In the process we extend the known results about $L^{p}$-boundedness of Fourier integral operators, from local boundedness to global boundedness for a larger class of symbols.
We obtain new local smoothing estimates for the Euclidean wave equation on $mathbb{R}^{n}$, by replacing the space of initial data by a Hardy space for Fourier integral operators. This improves the bounds in the local smoothing conjecture for $pgeq 2
We prove mapping properties of pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable.
We obtain improved bounds for pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable.
The Hardy spaces for Fourier integral operators $mathcal{H}_{FIO}^{p}(mathbb{R}^{n})$, for $1leq pleq infty$, were introduced by Smith in cite{Smith98a} and Hassell et al. in cite{HaPoRo18}. In this article, we give several equivalent characterizatio
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality