ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

51   0   0.0 ( 0 )
 نشر من قبل Ernest Ma
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Ernest Ma




اسأل ChatGPT حول البحث

In an $SU(2)_R$ extension of the standard model, it is shown how the neutral fermion $N$ in the doublet $(N,e)_R$ may be assigned baryon number $B=1$, in contrast to its $SU(2)_L$ counterpart $ u$ in the doublet $( u,e)_L$ which has lepton number $L=1$. This baryon-lepton duplicity allows a scalar $sigma$ which couples to $N_L N_L$ to be long-lived dark matter.

قيم البحث

اقرأ أيضاً

137 - Ernest Ma , Koji Tsumura 2018
The well-known baryon and lepton numbers of the standard model of quarks and leptons are extended to include new fermions and bosons in a simple structure with several essential features. The usual heavy right-handed neutrino singlets (for neutrino m ass and leptogenesis) are related to the axion which solves the strong CP problem. At the same time, baryon number is broken softly, allowing the proton to decay. Associated with this breaking, a long-lived dark-matter candidate (called the pseudo-sakharon) emerges. This new insight connects proton decay to a new component of dark matter.
174 - Jan Heisig 2018
While the paradigm of a weakly interacting massive particle (WIMP) has guided our search strategies for dark matter in the past decades, their null-results have stimulated growing interest in alternative explanations pointing towards non-standard sig natures. In this article we discuss the phenomenology of dark matter models that predict long-lived particle at the LHC. We focus on models with a $Z_2$-odd dark sector where - in decreasing order of the dark matter coupling - a coannihilation, conversion-driven freeze-out or superWIMP/freeze-in scenario could be realized.
Inelastic dark matter is an interesting scenario for light thermal dark matter which is fully consistent with all cosmological probes as well as direct and indirect dark matter detection. The required mass splitting between dark matter $chi_1$ and it s heavier twin $chi_2$ is naturally induced by a dark Higgs field which also provides a simple mechanism to give mass to the dark photon $A$ present in the setup. The corresponding dark Higgs boson $h$ is naturally the lightest dark sector state and therefore decays into Standard Model particles via Higgs mixing. In this work we study signatures with displaced vertices and missing momentum at Belle II, arising from dark Higgs particles produced in association with dark matter. We find that Belle II can be very sensitive to this scenario, in particular if a displaced vertex trigger is available in the near future.
63 - Sudhanwa Patra 2015
A lepto-baryonic left-right symmetric theory is considered along with pointing out stable dark matter candidates whose stability is ensured automatically where leptons and baryons are defined as local gauge symmetries. These theories are generally an omalous and the possible gauge anomaly free solutions for these theories are presented. It is found that the neutral component of fermion triplets can be a viable dark matter candidate originally introduced for gauge anomaly cancellation. The other dark matter possibilities within this lepto-baryonic left-right symmetric theory are also presented.
108 - Shinya Kanemura 2017
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken $Z_2$ symmetry that stabilizes the dark matter candidate (the lightest $Z_2$-odd particle). In this model, $Z_2$-odd particles play an important role to generate the mass of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strong first-order phase transition, which is required for the electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for the baryogenesis. Therefore, three problems in the standard model, namely absence of neutrino masses, the dark matter candidate, and the mechanism to generate baryon asymmetry of the Universe, may be simultaneously resolved at the TeV-scale. Phenomenology of this model is also discussed briefly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا