ﻻ يوجد ملخص باللغة العربية
A lepto-baryonic left-right symmetric theory is considered along with pointing out stable dark matter candidates whose stability is ensured automatically where leptons and baryons are defined as local gauge symmetries. These theories are generally anomalous and the possible gauge anomaly free solutions for these theories are presented. It is found that the neutral component of fermion triplets can be a viable dark matter candidate originally introduced for gauge anomaly cancellation. The other dark matter possibilities within this lepto-baryonic left-right symmetric theory are also presented.
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t
$SU(2)_L times SU(2)_R$ gauge symmetry requires three right-handed neutrinos ($ N _i $), one of which, $N_1$, can be sufficiently stable to be dark matter. In the early universe, $ W _R $ exchange with the Standard Model thermal bath keeps the right-
In this work, we studied baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) in the framework of LRSM where type I and type II seesaw terms arises naturally. The type I seesaw mass term is considered to be favouring $mu-tau$ symmetry
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result
We argue that dark matter can automatically arise from a gauge theory that possesses a non-minimal left-right gauge symmetry, SU(3)_C otimes SU(M)_L otimes SU(N)_R otimes U(1)_X, for (M,N) = (2,3), (3,2), (3,3), cdots, and (5,5).