ﻻ يوجد ملخص باللغة العربية
$SL^infty$ denotes the space of functions whose square function is in $L^infty$, and the subspaces $SL^infty_n$, $ninmathbb{N}$, are the finite dimensional building blocks of $SL^infty$. We show that the identity operator $I_{SL^infty_n}$ on $SL^infty_n$ well factors through operators $T : SL^infty_Nto SL^infty_N$ having large diagonal with respect to the standard Haar system. Moreover, we prove that $I_{SL^infty_n}$ well factors either through any given operator $T : SL^infty_Nto SL^infty_N$, or through $I_{SL^infty_N}-T$. Let $X^{(r)}$ denote the direct sum $bigl(sum_{ninmathbb{N}_0} SL^infty_nbigr)_r$, where $1leq r leq infty$. Using Bourgains localization method, we obtain from the finite dimensional factorization result that for each $1leq rleq infty$, the identity operator $I_{X^{(r)}}$ on $X^{(r)}$ factors either through any given operator $T : X^{(r)}to X^{(r)}$, or through $I_{X^{(r)}} - T$. Consequently, the spaces $bigl(sum_{ninmathbb{N}_0} SL^infty_nbigr)_r$, $1leq rleq infty$, are all primary.
We give a new description of classical Besov spaces in terms of a new modulus of continuity. Then a similar approach is used to introduce Besov classes on an infinite-dimensional space endowed with a Gaussian measure.
The identification mentioned in the title allows a formulation of the multidi mensional Favard Lemma different from the ones currently used in the literature and which exactly parallels the original one dimensional formulation in the sense that the p
We show that the non-separable Banach space $SL^infty$ is primary. This is achieved by directly solving the infinite dimensional factorization problem in $SL^infty$. In particular, we bypass Bourgains localization method.
We study the existence of zeroes of mappings defined in Banach spaces. We obtain, in particular, an extension of the well-known Bolzano-Poincare-Miranda theorem to infinite dimensional Banach spaces. We also establish a result regarding the existence
We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space $X$ has a non-empty intersection in the visual bordification $ bar{X} = X cup partial X$. Using this fact, several results known for proper CAT(0) spaces