ﻻ يوجد ملخص باللغة العربية
We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space $X$ has a non-empty intersection in the visual bordification $ bar{X} = X cup partial X$. Using this fact, several results known for proper CAT(0) spaces may be extended to finite-dimensional spaces, including the existence of canonical fixed points at infinity for parabolic isometries, algebraic and geometric restrictions on amenable group actions, and geometric superrigidity for non-elementary actions of irreducible uniform lattices in products of locally compact groups.
We show that the class of CAT(0) spaces is closed under suitable conformal changes. In particular, any CAT(0) space admits a large variety of non-trivial deformations.
Let $G$ be a group acting properly and essentially on an irreducible, non-Euclidean finite dimensional CAT(0) cube complex $X$ without fixed points at infinity. We show that for any finite collection of simultaneously inessential subgroups ${H_1, ldo
It is known that a cocompact special group $G$ does not contain $mathbb{Z} times mathbb{Z}$ if and only if it is hyperbolic; and it does not contain $mathbb{F}_2 times mathbb{Z}$ if and only if it is toric relatively hyperbolic. Pursuing in this dire
We prove that a minimal disc in a CAT(0) space is a local embedding away from a finite set of branch points. On the way we establish several basic properties of minimal surfaces: monotonicity of area densities, density bounds, limit theorems and the
We study abstract group actions of locally compact Hausdorff groups on CAT(0) spaces. Under mild assumptions on the action we show that it is continuous or has a global fixed point. This mirrors results by Dudley and Morris-Nickolas for actions on tr