ﻻ يوجد ملخص باللغة العربية
We study the configuration of efficient nonlinear Cerenkov diffraction generated from a one-dimensional nonlinear photonic crystal surface, which underlies the incorporation of both quasi-phase-matching and total internal reflection by the crystal surface. Multidirectional radiation spots with different Cerenkov angles are demonstrated experimentally, which results from different orders of reciprocal vectors. At specific angles, the incident light and total internal reflect light associating with quasi-phase-matching format completely phase-matching scheme, leading to great enhancement of harmonic efficiency.
Second-harmonic and sum-frequency mixing phenomena associated with 3D-localized photonic modes are studied in InP-based planar photonic crystal microcavities excited by short-pulse radiation near 1550 nm. Three-missing-hole microcavities that support
We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by c
Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to a
We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs lase
Light transport in a dilute photonic crystal is considered. The analytical expression for the transmission coefficient is derived.Straightening of light under certain conditions in a one-dimensional photonic crystal is predicted. Such behavior is cau