ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Terahertz Generation in Triply Resonant Nonlinear Photonic Crystal Microcavities

220   0   0.0 ( 0 )
 نشر من قبل Ian Burgess
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi(2) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible in an experimentally feasible geometry, with the operating output power at the point of optimal total conversion efficiency adjustable by varying the mode quality (Q) factors.



قيم البحث

اقرأ أيضاً

Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. U p to now, the most efficient approaches to THz generation at room temperature -- relying mainly on optical rectification schemes -- require intricate phase-matching set-ups and powerful lasers. Here we show how the unique light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of THz generation via nonlinear frequency down-conversion processes. We predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in nonlinear optical material systems. Furthermore, we propose a realistic design readily accesible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels.
Second-harmonic and sum-frequency mixing phenomena associated with 3D-localized photonic modes are studied in InP-based planar photonic crystal microcavities excited by short-pulse radiation near 1550 nm. Three-missing-hole microcavities that support two closely-spaced modes exhibit rich second-order scattering spectra that reflect intra- and inter-mode mixing via the bulk InP chi(2) during ring-down after excitation by the broadband, resonant pulse. Simultaneous excitation with a non-resonant source results in tunable second-order radiation from the microcavity.
We present a comprehensive study of second-order nonlinear difference frequency generation in triply resonant cavities using a theoretical framework based on coupled-mode theory. We show that optimal quantum-limited conversion efficiency can be achie ved at any pump power when the powers at the pump and idler frequencies satisfy a critical relationship. We demonstrate the existence of a broad parameter range in which all triply-resonant DFG processes exhibit monostable conversion. We also demonstrate the existence of a geometry-dependent bistable region.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume a nd doubly resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly resonant nanocavities with low mode volume and large quality factor by localized defects in a photonic crystal structure. We build on this approach by applying an evolutionary optimisation algorithm in connection with Maxwell equations solvers, showing that the proposed design recipe can be applied to any material platform. We explicitly calculate the second-harmonic generation efficiency for doubly resonant photonic crystal cavity designs in typical III-V semiconductor materials, such as GaN and AlGaAs, targeting a fundamental harmonic at telecom wavelengths, and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realisation of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
We propose and experimentally demonstrate a photonic crystal nanocavity with multiple resonances that can be tuned nearly independently. The design is composed of two orthogonal intersecting nanobeam cavities. Experimentally, we measure cavity qualit y factors of 6,600 and 1000 for resonances separated by 382 nm; we measure a maximum separation between resonances of 506 nm. These structures are promising for enhancing efficiency in nonlinear optical processes such as sum/difference frequency and stimulated Raman scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا