ﻻ يوجد ملخص باللغة العربية
In the absence of the physical understanding of the phenomenon, different empirical laws have been used as approximation for distribution of dark matter in galaxies and clusters of galaxies. We suggest a new profile which is not empirical in nature, but motivated with the physical idea that what we call dark matter is essentially the gravitational polarization of the quantum vacuum (containing virtual gravitational dipoles) by the immersed baryonic matter. It is very important to include this new profile in forthcoming studies of dark matter halos and to reveal how well it performs in comparison with empirical profiles. A good agreement of the profile with observational findings would be the first sign of unexpected gravitational properties of the quantum vacuum.
We use observations of gas-rich dwarf galaxies to derive constraints on dark matter scattering with ordinary matter. We require that heating/cooling due to DM interacting with gas in the Leo T dwarf galaxy not exceed the ultra-low radiative cooling r
We study the probability distribution function (PDF) of relative velocity between two different dark matter halos (i.e. pairwise velocity) with a set of high-resolution cosmological $N$-body simulations. We investigate the pairwise velocity PDFs over
We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satell
`Conspiracy between the dark and the baryonic mater prohibits an unambiguous decomposition of disc galaxy rotation curves into the corresponding components. Several methods have been proposed to counter this difficulty, but their results are widely d
Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would form cored density distributions (`solitons) at the center of galaxies. ULDM solitons offer a promising way to exclude or detect ULDM by looking for a