ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-Topological Lifshitz Black Holes

51   0   0.0 ( 0 )
 نشر من قبل Robert Mann
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of including a quasi-topological cubic curvature term to the Gauss-Bonnet action to five dimensional Lifshitz gravity. We find that a new set of Lifshitz black hole solutions exist that are analogous to those obtained in third-order Lovelock gravity in higher dimensions. No additional matter fields are required to obtain solutions with asymptotic Lifshitz behaviour, though we also investigate solutions with matter. Furthermore, we examine black hole solutions and their thermodynamics in this situation and find that a negative quasi-topological term, just like a positive Gauss-Bonnet term, prevents instabilities in what are ordinarily unstable Einsteinian black holes.

قيم البحث

اقرأ أيضاً

92 - M.H. Dehghani , R. Pourhasan , 2011
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the sol utions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical potential. We also consider the effect of Maxwell charge on the effective potential between objects in the dual theory.
While cubic Quasi-topological gravity is unique, there is a family of quartic Quasi-topological gravities in five dimensions. These theories are defined by leading to a first order equation on spherically symmetric spacetimes, resembling the structur e of the equations of Lovelock theories in higher-dimensions, and are also ghost free around AdS. Here we construct slowly rotating black holes in these theories, and show that the equations for the off-diagonal components of the metric in the cubic theory are automatically of second order, while imposing this as a restriction on the quartic theories allows to partially remove the degeneracy of these theories, leading to a three-parameter family of Lagrangians of order four in the Riemann tensor. This shows that the parallel with Lovelock theory observed on spherical symmetry, extends to the realm of slowly rotating solutions. In the quartic case, the equations for the slowly rotating black hole are obtained from a consistent, reduced action principle. These functions admit a simple integration in terms of quadratures. Finally, in order to go beyond the slowly rotating regime, we explore the consistency of the Kerr-Schild ansatz in cubic Quasi-topological gravity. Requiring the spacetime to asymptotically match with the rotating black hole in GR, for equal oblateness parameters, the Kerr-Schild deformation of an AdS vacuum, does not lead to a solution for generic values of the coupling. This result suggests that in order to have solutions with finite rotation in Quasi-topological gravity, one must go beyond the Kerr-Schild ansatz.
We consider scalar field perturbations about asymptotically Lifshitz black holes with dynamical exponent z in D dimensions. We show that, for suitable boundary conditions, these Lifshitz black holes are stable under scalar field perturbations. For z= 2, we explicitly compute the quasinormal mode frecuencies, which result to be purely imaginary, and then obtain the damping-off of the scalar field perturbation in these backgrounds. The general analysis includes, in particular, the z=3 black hole solution of three-dimensional massive gravity.
In arbitrary dimension, we consider a theory described by the most general quadratic curvature corrections of Einstein gravity together with a self-interacting nonminimally coupled scalar field. This theory is shown to admit five different families o f Lifshitz black holes dressed with a nontrivial scalar field. The entropy of these configurations is microscopically computed by means of a higher-dimensional anisotropic Cardy-like formula where the role of the ground state is played by the soliton obtained through a double analytic continuation. This involves to calculate the correct expressions for the masses of the higher-dimensional Lifshitz black hole as well as their corresponding soliton. The robustness of this Cardy-like formula is checked by showing that the microscopic entropy is in perfect agreement with the gravitational Wald entropy. Consequently, the calculated global charges are compatible with the first law of thermodynamics. We also verify that all the configurations satisfy an anisotropic higher-dimensional version of the Smarr formula.
We study scalar perturbations of four dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then, we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum and the mass of the scalar field in the modes. It is found that the modes are overdamped depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In constrast, for plane transverse sections the modes are always overdamped.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا