ترغب بنشر مسار تعليمي؟ اضغط هنا

Slowly rotating black holes in Quasi-topological gravity

122   0   0.0 ( 0 )
 نشر من قبل Nicolas Mora
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While cubic Quasi-topological gravity is unique, there is a family of quartic Quasi-topological gravities in five dimensions. These theories are defined by leading to a first order equation on spherically symmetric spacetimes, resembling the structure of the equations of Lovelock theories in higher-dimensions, and are also ghost free around AdS. Here we construct slowly rotating black holes in these theories, and show that the equations for the off-diagonal components of the metric in the cubic theory are automatically of second order, while imposing this as a restriction on the quartic theories allows to partially remove the degeneracy of these theories, leading to a three-parameter family of Lagrangians of order four in the Riemann tensor. This shows that the parallel with Lovelock theory observed on spherical symmetry, extends to the realm of slowly rotating solutions. In the quartic case, the equations for the slowly rotating black hole are obtained from a consistent, reduced action principle. These functions admit a simple integration in terms of quadratures. Finally, in order to go beyond the slowly rotating regime, we explore the consistency of the Kerr-Schild ansatz in cubic Quasi-topological gravity. Requiring the spacetime to asymptotically match with the rotating black hole in GR, for equal oblateness parameters, the Kerr-Schild deformation of an AdS vacuum, does not lead to a solution for generic values of the coupling. This result suggests that in order to have solutions with finite rotation in Quasi-topological gravity, one must go beyond the Kerr-Schild ansatz.

قيم البحث

اقرأ أيضاً

We prove the linear stability of slowly rotating Kerr black holes as solutions of the Einstein vacuum equation: linearized perturbations of a Kerr metric decay at an inverse polynomial rate to a linearized Kerr metric plus a pure gauge term. We work in a natural wave map/DeTurck gauge and show that the pure gauge term can be taken to lie in a fixed 7-dimensional space with a simple geometric interpretation. Our proof rests on a robust general framework, based on recent advances in microlocal analysis and non-elliptic Fredholm theory, for the analysis of resolvents of operators on asymptotically flat spaces. With the mode stability of the Schwarzschild metric as well as of certain scalar and 1-form wave operators on the Schwarzschild spacetime as an input, we establish the linear stability of slowly rotating Kerr black holes using perturbative arguments; in particular, our proof does not make any use of special algebraic properties of the Kerr metric. The heart of the paper is a detailed description of the resolvent of the linearization of a suitable hyperbolic gauge-fixed Einstein operator at low energies. As in previous work by the second and third authors on the nonlinear stability of cosmological black holes, constraint damping plays an important role. Here, it eliminates certain pathological generalized zero energy states; it also ensures that solutions of our hyperbolic formulation of the linearized Einstein equation have the stated asymptotics and decay for general initial data and forcing terms, which is a useful feature in nonlinear and numerical applications.
We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).
103 - Manu Srivastava 2021
Using gravitational wave observations to search for deviations from general relativity in the strong-gravity regime has become an important research direction. Chern Simons (CS) gravity is one of the most frequently studied parity-violating models of strong gravity. It is known that the Kerr black-hole is not a solution for CS gravity. At the same time, the only rotating solution available in the literature for dynamical CS (dCS) gravity is the slow-rotating case most accurately known to quadratic order in spin. In this work, for the slow-rotating case (accurate to first order in spin), we derive the linear perturbation equations governing the metric and the dCS field accurate to linear order in spin and quadratic order in the CS coupling parameter ($alpha$) and obtain the quasi-normal mode (QNM) frequencies. After confirming the recent results of Wagle et al. (2021), we find an additional contribution to the eigenfrequency correction at the leading perturbative order of $alpha^2$. Unlike Wagle et al., we also find corrections to frequencies in the polar sector. We compute these extra corrections by evaluating the expectation values of the perturbative potential on unperturbed QNM wavefunctions along a contour deformed into the complex-$r$ plane. For $alpha=0.1 M^2$, we obtain the ratio of the imaginary parts of the dCS correction to the GR correction in the first QNM frequency (in the polar sector) to be $0.263$ implying significant change. For the $(2,2)-$mode, the dCS corrections make the imaginary part of the first QNM of the fundamental mode less negative, thereby decreasing the decay rate. Our results, along with future gravitational wave observations, can be used to test for dCS gravity and further constrain the CS coupling parameters. [abridged]
Within the framework of the complexity equals action and complexity equals volume conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which con siderable simplification occurs. We study the complexity of formation, uncovering a direct connection between complexity of formation and thermodynamic volume for large black holes. We consider also the growth-rate of complexity, finding that at late-times the rate of growth approaches a constant, but that Lloyds bound is generically violated.
We present a class of charged black hole solutions in an ($n+2)$-dimensional massive gravity with a negative cosmological constant, and study thermodynamics and phase structure of the black hole solutions both in grand canonical ensemble and canonica l ensemble. The black hole horizon can have a positive, zero or negative constant curvature characterized by constant $k$. By using Hamiltonian approach, we obtain conserved charges of the solutions and find black hole entropy still obeys the area formula and the gravitational field equation at the black hole horizon can be cast into the first law form of black hole thermodynamics. In grand canonical ensemble, we find that thermodynamics and phase structure depends on the combination $k -mu^2/4 +c_2 m^2$ in the four dimensional case, where $mu$ is the chemical potential and $c_2m^2$ is the coefficient of the second term in the potential associated with graviton mass. When it is positive, the Hawking-Page phase transition can happen, while as it is negative, the black hole is always thermodynamically stable with a positive capacity. In canonical ensemble, the combination turns out to be $k+c_2m^2$ in the four dimensional case. When it is positive, a first order phase transition can happen between small and large black holes if the charge is less than its critical one. In higher dimensional ($n+2 ge 5$) case, even when the charge is absent, the small/large black hole phase transition can also appear, the coefficients for the third ($c_3m^2$) and/or the fourth ($c_4m^2$) terms in the potential associated with graviton mass in the massive gravity can play the same role as the charge does in the four dimensional case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا