ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of the jet opening angle on the appearance of relativistic jets

111   0   0.0 ( 0 )
 نشر من قبل Petrucci
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reinvestigate the problem of the appearance of relativistic jets when geometrical opening is taken into account. We propose a new criterion to define apparent velocities and Doppler factors, which we think being determined by the brightest zone of the jet. We numerically compute the apparent velocity and the Doppler factor of a non homokinetic jet using different velocity profiles. We argue that if the motion is relativistic, the high superluminal velocities beta_{app} ~ gamma, expected in the case of an homokinetic jet, are only possible for geometrical collimation smaller than the relativistic beaming angle 1/gamma. This is relatively independent of the jet velocity profile. For jet collimation angles larger than 1/gamma, the apparent image of the jet will always be dominated by parts of the jet traveling directly towards the observer at lorentz factors < gamma resulting in maximal apparent velocities smaller than gamma}. Furthermore, getting rid of the homokinetic hypothesis yields a complex relation between the observing angle and the Doppler factor, resulting in important consequences for the numerical computation of AGN population and unification scheme model.



قيم البحث

اقرأ أيضاً

Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
There are several methods to calculate the radiative and kinetic power of relativistic jets, but their results can differ by one or two orders of magnitude. Therefore, it is necessary to perform a calibration of the jet power, to understand the reaso ns for these differences (whether wrong hypotheses or intrinsic source variability), and if it is possible to converge to a reliable measurement of this physical quantity. We present preliminary results of a project aimed at calibrating the power of relativistic jets in active galactic nuclei (AGN) and X-ray binaries (XRB). We started by selecting all the AGN associations with known redshift in the Fourth Fermi LAT Gamma-Ray Catalog (4FGL). We then calculated the radiative and/or kinetic powers from available data or we extracted this information from literature. We compare the values obtained for overlapping samples and highlight early conclusions.
The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual r ise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.
We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model -- where a narrow stream of fluid is injected into a static medium -- and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look down the barrel of the jet. These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.
122 - D. M. Russell 2013
We revisit the paradigm of the dependency of jet power on black hole spin in accreting black hole systems. In a previous paper we showed that the luminosity of compact jets continuously launched due to accretion onto black holes in X-ray binaries (an alogous to those that dominate the kinetic feedback from AGN) do not appear to correlate with reported black hole spin measurements. It is therefore unclear whether extraction of the black hole spin energy is the main driver powering compact jets from accreting black holes. Occasionally, black hole X-ray binaries produce discrete, transient (ballistic) jets for a brief time over accretion state changes. Here, we quantify the dependence of the power of these transient jets (adopting two methods to infer the jet power) on black hole spin, making use of all the available data in the current literature, which includes 12 BHs with both measured spin parameters and radio flares over the state transition. In several sources, regular, well-sampled radio monitoring has shown that the peak radio flux differs dramatically depending on the outburst (up to a factor of 1000) whereas the total power required to energise the flare may only differ by a factor ~< 4 between outbursts. The peak flux is determined by the total energy in the flare and the time over which it is radiated (which can vary considerably between outbursts). Using a Bayesian fitting routine we rule out a statistically significant positive correlation between transient jet power measured using these methods, and current estimates of black hole spin. Even when selecting subsamples of the data that disregard some methods of black hole spin measurement or jet power measurement, no correlation is found in all cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا