ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical origin of shear-banding in jammed systems

376   0   0.0 ( 0 )
 نشر من قبل Guillaume Ovarlez
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philippe Coussot




اسأل ChatGPT حول البحث

Jammed systems all have a yield stress. Among these materials some have been shown to shear-band but it is as yet unclear why some materials develop shear-band and some others do not. In order to rationalize existing data concerning the flow characteristics of jammed systems and in particular understand the physical origin of such a difference we propose a simple approach for describing the steady flow behaviour of yield stress fluids, which retains only basic physical ingredients. Within this frame we show that in the liquid regime the behaviour of jammed systems turns from that of a simple yield stress fluid (exhibiting homogeneous flows) to a shear-banding material when the ratio of a characteristic relaxation time of the system to a restructuring time becomes smaller than 1, thus suggesting a possible physical origin of these trends.

قيم البحث

اقرأ أيضاً

103 - Guillaume Ovarlez 2010
We study the steady flow properties of different three-dimensional aqueous foams in a wide gap Couette geometry. From local velocity measurements through Magnetic Resonance Imaging techniques and from viscosity bifurcation experiments, we find that t hese foams do not exhibit any observable signature of shear banding. This contrasts with two previous results (Rodts et al., Europhys. Lett., 69 (2005) 636 and Da Cruz et al., Phys. Rev. E, 66 (2002) 051305); we discuss possible reasons for this dicrepancy. Moreover, the foams we studied undergo steady flow for shear rates well below the critical shear rate recently predicted (Denkov et al., Phys. Rev. Lett., 103 (2009) 118302). Local measurements of the constitutive law finally show that these foams behave as simple Herschel-Bulkley yield stress fluids.
We report experiments on hard sphere colloidal glasses that reveal a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability arising from shear-concentration coupling, a mechanism previousl y thought unimportant in this class of materials. Below a characteristic shear rate $dotgamma_c$ we observe increasingly non-linear velocity profiles and strongly localized flows. We attribute this trend to very slight concentration gradients (likely to evade direct detection) arising in the unstable flow regime. A simple model accounts for both the observed increase of $dotgamma_c$ with concentration, and the fluctuations observed in the flow.
Bacterial suspensions--a premier example of active fluids--show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a supe rfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear-banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides new insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes.
We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied simple or pure shear strain $gamma$ at fixed packing fraction $phi$. MS packings of frictionless disks occur as geometric families (i.e. parabolic segments with positive curvature) in the $phi$-$gamma$ plane. MS packings from protocol 1 populate parabolic segments with both signs of the slope, $dphi/dgamma >0$ and $dphi/dgamma <0$. In contrast, MS packings from protocol 2 populate segments with $dphi/dgamma <0$ only. For both simple and pure shear, we derive a relationship between the stress anisotropy and dilatancy $dphi/dgamma$ obeyed by MS packings along geometrical families. We show that for MS packings prepared using isotropic compression, the stress anisotropy distribution is Gaussian centered at zero with a standard deviation that decreases with increasing system size. For shear jammed MS packings, the stress anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a nonzero average and standard deviation in the large-system limit. We also develop a framework to calculate the stress anisotropy distribution for packings generated via protocol 2 in terms of the stress anisotropy distribution for packings generated via protocol 1. These results emphasize that for repulsive frictionless disks, different packing-generation protocols give rise to different MS packing probabilities, which lead to differences in macroscopic properties of MS packings.
We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of which is linearly stable against general two-dimensional perturbations. This is in contrast to analogous results for the Johnson-Segalman model, which includes normal stresses, and which has been reported to be linearly unstable for general two-dimensional perturbations. This strongly suggests that the linear instabilities found in the Johnson-Segalman can be attributed to normal stress effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا