ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric shear banding and swarming vortices in bacterial superfluids

94   0   0.0 ( 0 )
 نشر من قبل Xiang Cheng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bacterial suspensions--a premier example of active fluids--show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear-banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides new insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes.



قيم البحث

اقرأ أيضاً

We report experiments on hard sphere colloidal glasses that reveal a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability arising from shear-concentration coupling, a mechanism previousl y thought unimportant in this class of materials. Below a characteristic shear rate $dotgamma_c$ we observe increasingly non-linear velocity profiles and strongly localized flows. We attribute this trend to very slight concentration gradients (likely to evade direct detection) arising in the unstable flow regime. A simple model accounts for both the observed increase of $dotgamma_c$ with concentration, and the fluctuations observed in the flow.
141 - Guillaume Ovarlez 2010
We study the steady flow properties of different three-dimensional aqueous foams in a wide gap Couette geometry. From local velocity measurements through Magnetic Resonance Imaging techniques and from viscosity bifurcation experiments, we find that t hese foams do not exhibit any observable signature of shear banding. This contrasts with two previous results (Rodts et al., Europhys. Lett., 69 (2005) 636 and Da Cruz et al., Phys. Rev. E, 66 (2002) 051305); we discuss possible reasons for this dicrepancy. Moreover, the foams we studied undergo steady flow for shear rates well below the critical shear rate recently predicted (Denkov et al., Phys. Rev. Lett., 103 (2009) 118302). Local measurements of the constitutive law finally show that these foams behave as simple Herschel-Bulkley yield stress fluids.
419 - Philippe Coussot 2010
Jammed systems all have a yield stress. Among these materials some have been shown to shear-band but it is as yet unclear why some materials develop shear-band and some others do not. In order to rationalize existing data concerning the flow characte ristics of jammed systems and in particular understand the physical origin of such a difference we propose a simple approach for describing the steady flow behaviour of yield stress fluids, which retains only basic physical ingredients. Within this frame we show that in the liquid regime the behaviour of jammed systems turns from that of a simple yield stress fluid (exhibiting homogeneous flows) to a shear-banding material when the ratio of a characteristic relaxation time of the system to a restructuring time becomes smaller than 1, thus suggesting a possible physical origin of these trends.
Dense emulsions, colloidal gels, microgels, and foams all display a solid-like behavior at rest characterized by a yield stress, above which the material flows like a liquid. Such a fluidization transition often consists of long-lasting transient flo ws that involve shear-banded velocity profiles. The characteristic time for full fluidization, $tau_text{f}$, has been reported to decay as a power-law of the shear rate $dot gamma$ and of the shear stress $sigma$ with respective exponents $alpha$ and $beta$. Strikingly, the ratio of these exponents was empirically observed to coincide with the exponent of the Herschel-Bulkley law that describes the steady-state flow behavior of these complex fluids. Here we introduce a continuum model, based on the minimization of a free energy, that captures quantitatively all the salient features associated with such textit{transient} shear-banding. More generally, our results provide a unified theoretical framework for describing the yielding transition and the steady-state flow properties of yield stress fluids.
Controlling the phases of matter is a challenge that spans from condensed materials to biological systems. Here, by imposing a geometric boundary condition, we study controlled collective motion of Escherichia coli bacteria. A circular microwell isol ates a rectified vortex from disordered vortices masked in bulk. For a doublet of microwells, two vortices emerge but their spinning directions show transition from parallel to anti-parallel. A Vicsek-like model for confined self-propelled particles gives the point where two spinning patterns occur in equal probability and one geometric quantity governs the transition as seen in experiments. This mechanism shapes rich patterns including chiral configurations in a quadruplet of microwells, thus revealing a design principle of active vortices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا