ترغب بنشر مسار تعليمي؟ اضغط هنا

Additivity of the Renyi entropy of order 2 for positive-partial-transpose-inducing channels

126   0   0.0 ( 0 )
 نشر من قبل Brecht Dierckx
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the minimal Renyi entropy of order 2 (RE2) output of a positive-partial-transpose(PPT)-inducing channel joint to an arbitrary other channel is equal to the sum of the minimal RE2 output of the individual channels. PPT-inducing channels are channels with a Choi matrix which is bound entangled or separable. The techniques used can be easily recycled to prove additivity for some non-PPT-inducing channels such as the depolarizing and transpose depolarizing channels, though not all known additive channels. We explicitly make the calculations for generalized Werner-Holevo channels as an example of both the scope and limitations of our techniques.



قيم البحث

اقرأ أيضاً

We study the distinguishability of a particular type of maximally entangled states -- the lattice states using a new approach of semidefinite program. With this, we successfully construct all sets of four ququad-ququad orthogonal maximally entangled states that are locally indistinguishable and find some curious sets of six states having interesting property of distinguishability. Also, some of the problems arose from cite{CosentinoR14} about the PPT-distinguishability of lattice maximally entangled states can be answered.
Additivity of minimal entropy output is proven for the class of quantum channels $Lambda_t (A):=t A^{T}+(1-t)tau (A)$ in the parameter range $-2/(d^2-2)le t le 1/(d+1)$.
We express the positive partial transpose (PPT) separability criterion for symmetric states of multi-qubit systems in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct a matrix from the tensor representation of the state and show that it is similar to the partial transpose of the density matrix written in the computational basis. Furthermore, the positivity of this matrix is equivalent to the positivity of a correlation matrix constructed from tensor products of Pauli operators. This allows for a more transparent experimental interpretation of the PPT criteria for an arbitrary spin-j state. The unitary matrices connecting our matrix to the partial transpose of the state generalize the so-called magic basis that plays a central role in Wootters explicit formula for the concurrence of a 2-qubit system and the Bell bases used for the teleportation of a one or two-qubit state.
We generalize our results in paper I in this series to quantum channels between general v. Neumann algebras, proving the approximate recoverability of states which undergo a small change in relative entropy through the channel. To this end, we derive a strengthened form of the quantum data processing inequality for the change in relative entropy of two states under a channel between two v. Neumann algebras. Compared to the usual inequality, there is an explicit lower bound involving the fidelity between the original state and a recovery channel.
Using a sharp version of the reverse Young inequality, and a Renyi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive Renyi entropy power inequalities for log-concave random vectors when Renyi parameters bel ong to $(0,1)$. Furthermore, the estimates are shown to be sharp up to absolute constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا