ترغب بنشر مسار تعليمي؟ اضغط هنا

On the entropy power inequality for the Renyi entropy of order [0,1]

96   0   0.0 ( 0 )
 نشر من قبل James Melbourne
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a sharp version of the reverse Young inequality, and a Renyi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive Renyi entropy power inequalities for log-concave random vectors when Renyi parameters belong to $(0,1)$. Furthermore, the estimates are shown to be sharp up to absolute constants.



قيم البحث

اقرأ أيضاً

77 - Eshed Ram , Igal Sason 2016
This paper gives improved R{e}nyi entropy power inequalities (R-EPIs). Consider a sum $S_n = sum_{k=1}^n X_k$ of $n$ independent continuous random vectors taking values on $mathbb{R}^d$, and let $alpha in [1, infty]$. An R-EPI provides a lower bound on the order-$alpha$ Renyi entropy power of $S_n$ that, up to a multiplicative constant (which may depend in general on $n, alpha, d$), is equal to the sum of the order-$alpha$ Renyi entropy powers of the $n$ random vectors ${X_k}_{k=1}^n$. For $alpha=1$, the R-EPI coincides with the well-known entropy power inequality by Shannon. The first improved R-EPI is obtained by tightening the recent R-EPI by Bobkov and Chistyakov which relies on the sharpened Youngs inequality. A further improvement of the R-EPI also relies on convex optimization and results on rank-one modification of a real-valued diagonal matrix.
An extension of the entropy power inequality to the form $N_r^alpha(X+Y) geq N_r^alpha(X) + N_r^alpha(Y)$ with arbitrary independent summands $X$ and $Y$ in $mathbb{R}^n$ is obtained for the Renyi entropy and powers $alpha geq (r+1)/2$.
The paper establishes the equality condition in the I-MMSE proof of the entropy power inequality (EPI). This is done by establishing an exact expression for the deficit between the two sides of the EPI. Interestingly, a necessary condition for the eq uality is established by making a connection to the famous Cauchy functional equation.
This note contributes to the understanding of generalized entropy power inequalities. Our main goal is to construct a counter-example regarding monotonicity and entropy comparison of weighted sums of independent identically distributed log-concave ra ndom variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.
63 - Igal Sason 2018
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a dis crete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to Renyi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا