ﻻ يوجد ملخص باللغة العربية
We develop a spectral representation formalism to calculate the Casimir force in the non-retarded limit, between a spherical particle and a substrate, both with arbitrary local dielectric properties. This spectral formalism allows one to do a systematic study of the force as a function of the geometrical variables separately from the dielectric properties. We found that the force does not follow a simple power-law as a function of the separation between the sphere and substrate. As a consequence, the non-retarded Casimir force is enhanced by several orders of magnitude as the sphere approaches the substrate, while at large separations the dipolar term dominates the force.
We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual an
We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure
We calculate the Casimir force between two parallel ideal metal plates when there is an intervening chiral medium present. Making use of methods of quantum statistical mechanics we show how the force can be found in a simple and compact way. The expr
In a recent Comment, Decca et al. [Phys. Rev. A 79, 026101 (2009); arXiv:0809.3576] discussed the origin of the anomalies recently reported by us in Phys. Rev. A 78, 036102(R) (2008); arXiv:0812.0028 . Here we restate our view, corroborated by their
The dielectric sphere has been an important test case for understanding and calculating the vacuum force of a dielectric body onto itself. Here we develop a method for computing this force in homogeneous spheres of arbitrary dielectric properties emb