ﻻ يوجد ملخص باللغة العربية
The dielectric sphere has been an important test case for understanding and calculating the vacuum force of a dielectric body onto itself. Here we develop a method for computing this force in homogeneous spheres of arbitrary dielectric properties embedded in arbitrary homogeneous backgrounds, assuming only that both materials are isotropic and dispersionless. Our results agree with known special cases; most notably we reproduce the prediction of Boyer and Schwinger et al. of a repulsive Casimir force of a perfectly reflecting shell. Our results disagree with the literature in the dilute limit. We argue that Casimir forces can not be regarded as due to pair-wise Casimir-Polder interactions, but rather due to reflections of virtual electromagnetic waves.
It has always been conventionally understood that, in the dilute limit, the Casimir energy of interaction between bodies or the Casimir self-energy of a dielectric body could be identified with the sum of the van der Waals or Casimir-Polder energies
In our paper [Ann. Phys. (NY) 395, 326 (2018)] we calculate the Casimir stress on a sphere immersed in a homogeneous background, assuming dispersionless dielectrics. Our results appear to challenge the conventional picture of Casimir forces. The pape
We derive an exact solution for the Casimir force between two arbitrary periodic dielectric gratings and illustrate our method by applying it to two nanostructured silicon gratings. We also reproduce the Casimir force gradient measured recently [1] b
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitzs theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous di
Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dic