ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Circuits with Unbounded Fan-out

119   0   0.0 ( 0 )
 نشر من قبل Robert Spalek
 تاريخ النشر 2002
والبحث باللغة English
 تأليف Peter Hoyer




اسأل ChatGPT حول البحث

We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed basis (denoted by QNCf^0) can approximate with polynomially small error the following gates: parity, mod[q], And, Or, majority, threshold[t], exact[q], and Counting. Classically, we need logarithmic depth even if we can use unbounded fan-in gates. If we allow arbitrary one-qubit gates instead of a fixed basis, then these circuits can also be made exact in log-star depth. Sorting, arithmetical operations, phase estimation, and the quantum Fourier transform with arbitrary moduli can also be approximated in constant depth.

قيم البحث

اقرأ أيضاً

Recently, Bravyi, Gosset, and K{o}nig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but cannot be solved by any constant-depth classical circuit using bounded fan-in AND, OR, and NOT gates (or NC^0 circuits). In other words, they exhibited a search problem in QNC^0 that is not in NC^0. We strengthen their result by proving that the 2D HLF problem is not contained in AC^0, the class of classical, polynomial-size, constant-depth circuits over the gate set of unbounded fan-in AND and OR gates, and NOT gates. We also supplement this worst-case lower bound with an average-case result: There exists a simple distribution under which any AC^0 circuit (even of nearly exponential size) has exponentially small correlation with the 2D HLF problem. Our results are shown by constructing a new problem in QNC^0, which we call the Relaxed Parity Halving Problem, which is easier to work with. We prove our AC^0 lower bounds for this problem, and then show that it reduces to the 2D HLF problem. As a step towards even stronger lower bounds, we present a search problem that we call the Parity Bending Problem, which is in QNC^0/qpoly (QNC^0 circuits that are allowed to start with a quantum state of their choice that is independent of the input), but is not even in AC^0[2] (the class AC^0 with unbounded fan-in XOR gates). All the quantum circuits in our paper are simple, and the main difficulty lies in proving the classical lower bounds. For this we employ a host of techniques, including a refinement of H{aa}stads switching lemmas for multi-output circuits that may be of independent interest, the Razborov-Smolensky AC^0[2] lower bound, Vaziranis XOR lemma, and lower bounds for non-local games.
Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not ove rlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through __global interactions__. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out. Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7--24% reduction in error.
210 - Daniel Pade 2020
We show that the quantum parity gate on $n > 3$ qubits cannot be cleanly simulated by a quantum circuit with two layers of arbitrary C-SIGN gates of any arity and arbitrary 1-qubit unitary gates, regardless of the number of allowed ancilla qubits. Th is is the best known and first nontrivial separation between the parity gate and circuits of this form. The same bounds also apply to the quantum fanout gate. Our results are incomparable with those of Fang et al. [3], which apply to any constant depth but require a sublinear number of ancilla qubits on the simulating circuit.
The standard circuit model for quantum computation presumes the ability to directly perform gates between arbitrary pairs of qubits, which is unlikely to be practical for large-scale experiments. Power-law interactions with strength decaying as $1/r^ alpha$ in the distance $r$ provide an experimentally realizable resource for information processing, whilst still retaining long-range connectivity. We leverage the power of these interactions to implement a fast quantum fanout gate with an arbitrary number of targets. Our implementation allows the quantum Fourier transform (QFT) and Shors algorithm to be performed on a $D$-dimensional lattice in time logarithmic in the number of qubits for interactions with $alpha le D$. As a corollary, we show that power-law systems with $alpha le D$ are difficult to simulate classically even for short times, under a standard assumption that factoring is classically intractable. Complementarily, we develop a new technique to give a general lower bound, linear in the size of the system, on the time required to implement the QFT and the fanout gate in systems that are constrained by a linear light cone. This allows us to prove an asymptotically tighter lower bound for long-range systems than is possible with previously available techniques.
The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating quantum circuits. Given a quantum circuit $C$ with $n$ inputs and outputs and purported simulator whose output is distributed according to a distributio n $p$ over ${0,1}^n$, the linear XEB fidelity of the simulator is $mathcal{F}_{C}(p) = 2^n mathbb{E}_{x sim p} q_C(x) -1$ where $q_C(x)$ is the probability that $x$ is output from the distribution $C|0^nrangle$. A trivial simulator (e.g., the uniform distribution) satisfies $mathcal{F}_C(p)=0$, while Googles noisy quantum simulation of a 53 qubit circuit $C$ achieved a fidelity value of $(2.24pm0.21)times10^{-3}$ (Arute et. al., Nature19). In this work we give a classical randomized algorithm that for a given circuit $C$ of depth $d$ with Haar random 2-qubit gates achieves in expectation a fidelity value of $Omega(tfrac{n}{L} cdot 15^{-d})$ in running time $textsf{poly}(n,2^L)$. Here $L$ is the size of the emph{light cone} of $C$: the maximum number of input bits that each output bit depends on. In particular, we obtain a polynomial-time algorithm that achieves large fidelity of $omega(1)$ for depth $O(sqrt{log n})$ two-dimensional circuits. To our knowledge, this is the first such result for two dimensional circuits of super-constant depth. Our results can be considered as an evidence that fooling the linear XEB test might be easier than achieving a full simulation of the quantum circuit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا