ﻻ يوجد ملخص باللغة العربية
Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through __global interactions__. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out. Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7--24% reduction in error.
Currently available quantum computing hardware platforms have limited 2-qubit connectivity among their addressable qubits. In order to run a generic quantum algorithm on such a platform, one has to transform the initial logical quantum circuit descri
We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed basis (denoted by QNCf^0) can approximate with polynomially small error the follow
A quantum computer consists of a set of quantum bits upon which operations called gates are applied to perform computations. In order to perform quantum algorithms, physicists would like to design arbitrary gates to apply to quantum bits. However, th
This brief article gives an overview of quantum mechanics as a {em quantum probability theory}. It begins with a review of the basic operator-algebraic elements that connect probability theory with quantum probability theory. Then quantum stochastic
A Lyapunov-based method is presented for stabilizing and controlling of closed quantum systems. The proposed method is constructed upon a novel quantum Lyapunov function of the system state trajectory tracking error. A positive-definite operator in t