ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate quantum non-demolition measurements

117   0   0.0 ( 0 )
 نشر من قبل Joseph M. Renes
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum measurement limits the precision with which the waveform can be estimated, though these limits can in principle be overcome by quantum nondemolition (QND) measurement setups found in the literature. Strictly speaking, however, their implementation would require infinite energy, as their mathematical description involves Hamiltonians unbounded from below. This raises the question of how well one may approximate nondemolition setups with finite energy or finite-dimensional realizations. Here we consider a finite-dimensional waveform estimation setup based on the quasi-ideal clock and show that the estimation errors due to approximating the QND condition decrease slowly, as a power law, with increasing dimension. As a result, we find that good QND approximations require large energy or dimensionality. We argue that this result can be expected to also hold for setups based on truncated oscillators or spin systems.



قيم البحث

اقرأ أيضاً

The realization of quantum adiabatic dynamics is at the core of implementations of adiabatic quantum computers. One major issue is to efficiently compromise between the long time scales required by the adiabatic protocol and the detrimental effects o f the environment, which set an upper bound to the time scale of the operation. In this work we propose a protocol which achieves fast adiabatic dynamics by coupling the system to an external environment by the means of a quantum-non-demolition (QND) Hamiltonian. We analyse the infidelity of adiabatic transfer for a Landau-Zener problem in the presence of QND measurement, where the qubit couples to a meter which in turn quickly dissipates. We analyse the protocols fidelity as a function of the strength of the QND coupling and of the relaxation time of the meter. In the limit where the decay rate of the ancilla is the largest frequency scale of the dynamics, the QND coupling induces an effective dephasing in the adiabatic basis. Optimal conditions for adiabaticity are found when the coupling with the meter induces dissipative dynamics which suppresses unwanted diabatic transitions.
203 - Kae Nemoto , W. J. Munro 2005
In this paper we investigate the linear and nonlinear models of optical quantum computation and discuss their scalability and efficiency. We show how there are significantly different scaling properties in single photon computation when weak cross-Ke rr nonlinearities are allowed to supplement the usual linear optical set. In particular we show how quantum non-demolition measurements are an efficient resource for universal quantum computation.
287 - L. Sun , A. Petrenko , Z. Leghtas 2013
Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large Hilbert space and one or more observables must be monitored to reve al the occurrence of an error, without disturbing the information encoded in an unknown quantum state. Such observables, typically multi-qubit parities such as <XXXX>, must correspond to a special symmetry property inherent to the encoding scheme. Measurements of these observables, or error syndromes, must also be performed in a quantum non-demolition (QND) way and faster than the rate at which errors occur. Previously, QND measurements of quantum jumps between energy eigenstates have been performed in systems such as trapped ions, electrons, cavity quantum electrodynamics (QED), nitrogen-vacancy (NV) centers, and superconducting qubits. So far, however, no fast and repeated monitoring of an error syndrome has been realized. Here, we track the quantum jumps of a possible error syndrome, the photon number parity of a microwave cavity, by mapping this property onto an ancilla qubit. This quantity is just the error syndrome required in a recently proposed scheme for a hardware-efficient protected quantum memory using Schr{o}dinger cat states in a harmonic oscillator. We demonstrate the projective nature of this measurement onto a parity eigenspace by observing the collapse of a coherent state onto even or odd cat states. The measurement is fast compared to the cavity lifetime, has a high single-shot fidelity, and has a 99.8% probability per single measurement of leaving the parity unchanged. In combination with the deterministic encoding of quantum information in cat states realized earlier, our demonstrated QND parity tracking represents a significant step towards implementing an active system that extends the lifetime of a quantum bit.
We prove that any one-dimensional (1D) quantum state with small quantum conditional mutual information in all certain tripartite splits of the system, which we call a quantum approximate Markov chain, can be well-approximated by a Gibbs state of a sh ort-range quantum Hamiltonian. Conversely, we also derive an upper bound on the (quantum) conditional mutual information of Gibbs states of 1D short-range quantum Hamiltonians. We show that the conditional mutual information between two regions A and C conditioned on the middle region B decays exponentially with the square root of the length of B. These two results constitute a variant of the Hammersley-Clifford theorem (which characterizes Markov networks, i.e. probability distributions which have vanishing conditional mutual information, as Gibbs states of classical short-range Hamiltonians) for 1D quantum systems. The result can be seen as a strengthening - for 1D systems - of the mutual information area law for thermal states. It directly implies an efficient preparation of any 1D Gibbs state at finite temperature by a constant-depth quantum circuit.
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which p rovides explicit formulas for computations including their entanglement-assisted capacity. The case of one mode is discussed in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا