ﻻ يوجد ملخص باللغة العربية
We have developed a numerical method based on the transfer matrix to calculate the quasimodes and lasing modes in one-dimensional random systems. Depending on the relative magnitude of the localization length versus the system size, there are two regimes in which the quasimodes are distinct in spatial profile and frequency distribution. In the presence of uniform gain, the lasing modes have one-to-one correspondence to the quasimodes in both regimes. Local excitation may enhance the weight of a mode within the gain region due to local amplification, especially in a weakly scattering system.
Random lasers use radiative gain and multiple scatterers in disordered media to generate light amplification. In this study, we demonstrate a random laser based on diamond nanoneedles that act as scatterers in combination with fluorescent dye molecul
We investigate the effects of two dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250nm rutile (TiO2) particles in a Rhodamine 6G solution wa
Random lasing occurs as the result of a coherent optical feedback from multiple scattering centers. Here, we demonstrate that plasmonic gold nanostars are efficient light scattering centers, exhibiting strong field enhancement at their nanotips, whic
We investigate the lasing modes in fully chaotic polymer microstadiums under optical pumping. The lasing modes are regularly spaced in frequency, and their amplitudes oscillate with frequency. Our numerical simulations reveal that the lasing modes ar
We address the problem of achieving a random laser with a cloud of cold atoms, in which gain and scattering are provided by the same atoms. In this system, the elastic scattering cross-section is related to the complex atomic polarizability. As a con