ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave interference effect on polymer microstadium laser

250   0   0.0 ( 0 )
 نشر من قبل Wei Fang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the lasing modes in fully chaotic polymer microstadiums under optical pumping. The lasing modes are regularly spaced in frequency, and their amplitudes oscillate with frequency. Our numerical simulations reveal that the lasing modes are multi-orbit scar modes. The interference of partial waves propagating along the constituent orbits results in local maxima of quality factor at certain frequencies. The observed modulation of lasing mode amplitude with frequency results from the variation of quality factor, which provides the direct evidence of wave interference effect in open chaotic microcavities.



قيم البحث

اقرأ أيضاً

180 - W. Fang , G. S. Solomon , 2007
We presented a detailed experimental study on lasing in GaAs microstadium with various shapes. Unlike most deformed microcavities, the lasing threshold varies non-monotonically with the major-to-minor-axis ratio of the stadium. Under spatially unifor m optical pumping, the first lasing mode corresponds to a high-quality scar mode consisting of several unstable periodic orbits. By tuning the shape of GaAs stadium, we are able to minimize the lasing threshold. This work demonstrates the possibility of controlling chaotic microcavity laser.
We make a systematic theoretical analysis on the quantum interference (QI) effects in various fast-light media (including gain-assisted $N$, gain-assisted ladder-I, and gain-assisted ladder-II atomic systems). We show that such fast-light media are c apable of not only completely eliminating the absorption but also suppressing the gain of signal field, and hence provide the possibility to realize a stable propagation of the signal field with a superluminal velocity. We find that there is a destructive (constructive) QI effect in gain-assisted ladder-I (gain-assisted N) system, but no QI in the gain-assisted ladder-II system; furthermore, a crossover from destructive (constructive) QI to Autler-Townes splitting may occur for the gain-assisted ladder-I (gain-assisted N) system when the control field of the system is modulated. Our theoretical analysis can be applied to other multi-level systems, and the results obtained may have promising applications in optical and quantum information processing and transmission.
51 - X. Wu , J. Andreasen , H. Cao 2007
We have developed a numerical method based on the transfer matrix to calculate the quasimodes and lasing modes in one-dimensional random systems. Depending on the relative magnitude of the localization length versus the system size, there are two reg imes in which the quasimodes are distinct in spatial profile and frequency distribution. In the presence of uniform gain, the lasing modes have one-to-one correspondence to the quasimodes in both regimes. Local excitation may enhance the weight of a mode within the gain region due to local amplification, especially in a weakly scattering system.
We propose a new scheme to achieve sub-Rayleigh resolution of interference pattern with independent laser beams. We perform an experimental observation of a double-slit interference with two orthogonally polarized laser beams. The resolution of the i nterference pattern measured by a two-photon detection is doubled provided the two beams illuminate the double-slit with certain incident angles. The scheme is simple and can be in favor of both high intensity and perfect visibility.
We report a simple, novel sub-diffraction method, i.e. diffraction interference induced super-focusing in second-harmonic (SH) Talbot effect, to achieve focusing size of less than {lambda}_pump/8 without involving evanescent waves or sub-wavelength a pertures. By tailoring point spread functions with Fresnel diffraction interference, we observe periodic SH sub-diffracted spots over a hundred of micrometers away from the sample. Our demonstration is the first experimental realization of the proposal by Toraldo Di Francia pioneered 60 years ago for super-resolution imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا