ﻻ يوجد ملخص باللغة العربية
We report quantitative experimental results for the intensity of noise-induced fluctuations below the critical temperature difference $Delta T_c$ for Rayleigh-Benard convection. The structure factor of the fluctuating convection rolls is consistent with the expected rotational invariance of the system. In agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is found to be proportional to $1/sqrt{-epsilon}$ where $epsilon equiv Delta T / Delta T_c -1$. The noise power necessary to explain the measurements agrees with the prediction for thermal noise. (WAC95-1)
We study the stability of steady convection rolls in 2D Rayleigh--Benard convection with free-slip boundaries and horizontal periodicity over twelve orders of magnitude in the Prandtl number $(10^{-6} leq Pr leq 10^6)$ and five orders of magnitude in
For Rayleigh-Benard convection of a fluid with Prandtl number sigma approx 1, we report experimental and theoretical results on a pattern selection mechanism for cell-filling, giant, rotating spirals. We show that the pattern selection in a certain l
The dynamics of inertial particles in Rayleigh-B{e}nard convection, where both particles and fluid exhibit thermal expansion, is studied using direct numerical simulations (DNS). We consider the effect of particles with a thermal expansion coefficien
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$
We study numerically the melting of a horizontal layer of a pure solid above a convecting layer of its fluid rotating about the vertical axis. In the rotating regime studied here, with Rayleigh numbers of order $10^7$, convection takes the form of co