ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics and Selection of Giant Spirals in Rayleigh-Benard Convection

68   0   0.0 ( 0 )
 نشر من قبل David A. Egolf
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brendan B. Plapp




اسأل ChatGPT حول البحث

For Rayleigh-Benard convection of a fluid with Prandtl number sigma approx 1, we report experimental and theoretical results on a pattern selection mechanism for cell-filling, giant, rotating spirals. We show that the pattern selection in a certain limit can be explained quantitatively by a phase-diffusion mechanism. This mechanism for pattern selection is very different from that for spirals in excitable media.



قيم البحث

اقرأ أيضاً

58 - Mingming Wu , Guenter Ahlers , 1995
We report quantitative experimental results for the intensity of noise-induced fluctuations below the critical temperature difference $Delta T_c$ for Rayleigh-Benard convection. The structure factor of the fluctuating convection rolls is consistent w ith the expected rotational invariance of the system. In agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is found to be proportional to $1/sqrt{-epsilon}$ where $epsilon equiv Delta T / Delta T_c -1$. The noise power necessary to explain the measurements agrees with the prediction for thermal noise. (WAC95-1)
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$ are observed with $gammaapprox 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.
Using direct numerical simulations, we study the statistical properties of reversals in two-dimensional Rayleigh-Benard convection for infinite Prandtl number. We find that the large-scale circulation reverses irregularly, with the waiting time betwe en two consecutive genuine reversals exhibiting a Poisson distribution on long time scales, while the interval between successive crossings on short time scales shows a power law distribution. We observe that the vertical velocities near the sidewall and at the center show different statistical properties. The velocity near the sidewall shows a longer autocorrelation and $1/f^2$ power spectrum for a wide range of frequencies, compared to shorter autocorrelation and a narrower scaling range for the velocity at the center. The probability distribution of the velocity near the sidewall is bimodal, indicating a reversing velocity field. We also find that the dominant Fourier modes capture the dynamics at the sidewall and at the center very well. Moreover, we show a signature of weak intermittency in the fluctuations of velocity near the sidewall by computing temporal structure functions.
We study numerically the melting of a horizontal layer of a pure solid above a convecting layer of its fluid rotating about the vertical axis. In the rotating regime studied here, with Rayleigh numbers of order $10^7$, convection takes the form of co lumnar vortices, the number and size of which depend upon the Ekman and Prandtl numbers, as well as the geometry -- periodic or confined. As the Ekman and Rayleigh numbers vary, the number and average area of vortices vary in inverse proportion, becoming thinner and more numerous with decreasing Ekman number. The vortices transport heat to the phase boundary thereby controlling its morphology, characterized by the number and size of the voids formed in the solid, and the overall melt rate, which increases when the lower boundary is governed by a no-slip rather than a stress-free velocity boundary condition. Moreover, the number and size of voids formed are relatively insensitive to the Stefan number, here inversely proportional to the latent heat of fusion. For small values of the Stefan number, the convection in the fluid reaches a slowly evolving geostrophic state wherein columnar vortices transport nearly all the heat from the lower boundary to melt the solid at an approximately constant rate. In this quasi-steady state, we find that the Nusselt number, characterizing the heat flux, co-varies with the interfacial roughness, for all the flow parameters and Stefan numbers considered here. This confluence of processes should influence the treatment of moving boundary problems, particularly those in astrophysical and geophysical problems where rotational effects are important.
We explore the chaotic dynamics of Rayleigh-Benard convection using large-scale, parallel numerical simulations for experimentally accessible conditions. We quantify the connections between the spatiotemporal dynamics of the leading-order Lyapunov ve ctor and different measures of the flow field patterns topology and dynamics. We use a range of pattern diagnostics to describe the spatiotemporal features of the flow field structures which includes many of the traditional diagnostics used to describe convection as well as some diagnostics tailored to capture the dynamics of the patterns. Using precision-recall curves, we quantify the complex relationship between the pattern diagnostics and the regions where the magnitude of the leading-order Lyapunov vector is significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا