ﻻ يوجد ملخص باللغة العربية
We propose the sequential reaction process $^{15}$O($p$,$gamma)(beta^{+}$)$^{16}$O as a new pathway to bypass of the $^{15}$O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 10$^{10}$ times higher than the $^{15}$O($p$,$beta^{+}$)$^{16}$O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound $^{16}$F low lying states, obtained using the H($^{15}$O,p)$^{15}$O reaction. The large $(p,gamma)(beta^{+})$ cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.
High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the
Masses of 56,57Fe, 53Co^m, 53,56Co, 55,56,57Ni, 57,58Cu, and 59,60Zn have been determined with the JYFLTRAP Penning trap mass spectrometer at IGISOL with a precision of dm/m le 3 x 10^{-8}. The QEC values for 53Co, 55Ni, 56Ni, 57Cu, 58Cu, and 59Zn ha
A half-life of 2.2 $pm$ 0.2 s has been deduced for the ground-state $beta$ decay of $^{84}$Mo, more than 1$sigma$ shorter than the previously adopted value. $^{84}$Mo is an even-even N = Z nucleus lying on the proton dripline, created during explosiv
The degree to which the (p,gamma) and (p,alpha) reactions destroy 18F at temperatures 1-4x10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide 18F, a target of gamma-ray astronomy,
The most intense gamma-ray line observable from novae is likely to be from positron annihilation associated with the decay of 18F. The uncertainty in the destruction rate of this nucleus through the 18F(p,{alpha})15O reaction presents a limit to inte