ﻻ يوجد ملخص باللغة العربية
Masses of 56,57Fe, 53Co^m, 53,56Co, 55,56,57Ni, 57,58Cu, and 59,60Zn have been determined with the JYFLTRAP Penning trap mass spectrometer at IGISOL with a precision of dm/m le 3 x 10^{-8}. The QEC values for 53Co, 55Ni, 56Ni, 57Cu, 58Cu, and 59Zn have been measured directly with a typical precision of better than 0.7 keV and Coulomb displacement energies have been determined. The Q values for proton captures on 55Co, 56Ni, 58Cu, and 59Cu have been measured directly. The precision of the proton-capture Q value for 56Ni(p,gamma)57Cu, Q(p,gamma) = 689.69(51) keV, crucial for astrophysical rp-process calculations, has been improved by a factor of 37. The excitation energy of the proton emitting spin-gap isomer 53Co^m has been measured precisely, Ex = 3174.3(10) keV, and a Coulomb energy difference of 133.9(10) keV for the 19/2- state has been obtained. Except for 53Co, the mass values have been adjusted within a network of 17 frequency ratio measurements between 13 nuclides which allowed also a determination of the reference masses 55Co, 58Ni, and 59Cu.
High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the
The nuclear magnetic moment of the ground state of $^{55}$Ni ($I^{pi}=3/2^{-}, T_{1/2}=204$ ms) has been deduced to be $|mu$^{55}Ni)$|=(0.976 pm 0.026)$ $mu_N$ using the $beta$-NMR technique. Results of a shell model calculation in the full textit{fp
We propose the sequential reaction process $^{15}$O($p$,$gamma)(beta^{+}$)$^{16}$O as a new pathway to bypass of the $^{15}$O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 10$^{10}$ times higher
Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that is also an i
The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $beta^-$decay of $^{132}$In and $beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is gr