ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic Curve for the SO(6) sector of AdS/CFT

66   0   0.0 ( 0 )
 نشر من قبل Niklas Beisert
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct the general algebraic curve of degree four solving the classical sigma model on RxS5. Up to two loops it coincides with the algebraic curve for the dual sector of scalar operators in N=4 SYM, also constructed here. We explicitly reproduce some particular solutions.

قيم البحث

اقرأ أيضاً

We investigate the monodromy of the Lax connection for classical IIB superstrings on AdS_5xS^5. For any solution of the equations of motion we derive a spectral curve of degree 4+4. The curve consists purely of conserved quantities, all gauge degrees of freedom have been eliminated in this form. The most relevant quantities of the solution, such as its energy, can be expressed through certain holomorphic integrals on the curve. This allows for a classification of finite gap solutions analogous to the general solution of strings in flat space. The role of fermions in the context of the algebraic curve is clarified. Finally, we derive a set of integral equations which reformulates the algebraic curve as a Riemann-Hilbert problem. They agree with the planar, one-loop N=4 supersymmetric gauge theory proving the complete agreement of spectra in this approximation.
We conjecture the Quantum Spectral Curve equations for string theory on $AdS_3 times S^3 times T^4$ with RR charge and its CFT$_2$ dual. We show that in the large-length regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bet he Ansatz equations for the massive sector of the theory, including the exact dressing phases found in the literature. The structure of the QSC shares many similarities with the previously known AdS$_5$ and AdS$_4$ cases, but contains a critical new feature - the branch cuts are no longer quadratic. Nevertheless, we show that much of the QSC analysis can be suitably generalised producing a self-consistent system of equations. While further tests are necessary, particularly outside the massive sector, the simplicity and self-consistency of our construction suggests the completeness of the QSC.
We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity i n five dimensions, with the four-manifold as conformal boundary. Under AdS/CFT, minus the logarithm of the partition function of the gauge theory is identified with the holographically renormalized supergravity action. We show that the latter is independent of the metric on the boundary four-manifold, as required for a topological theory. Supersymmetric solutions in the bulk satisfy first order differential equations for a twisted $Sp(1)$ structure, which extends the quaternionic Kahler structure that exists on any Riemannian four-manifold boundary. We comment on applications and extensions, including generalizations to other topological twists.
In this paper we study in detail the deformations introduced in [1] of the integrable structures of the AdS$_{2,3}$ integrable models. We do this by embedding the corresponding scattering matrices into the most general solutions of the Yang-Baxter eq uation. We show that there are several non-trivial embeddings and corresponding deformations. We work out crossing symmetry for these models and study their symmetry algebras and representations. In particular, we identify a new elliptic deformation of the $rm AdS_3 times S^3 times M^4$ string sigma model.
We study the AdS/CFT thermodynamics of the spatially isotropic counterpart of the Bjorken similarity flow in d-dimensional Minkowski space with d>=3, and of its generalisation to linearly expanding d-dimensional Friedmann-Robertson-Walker cosmologies with arbitrary values of the spatial curvature parameter k. The bulk solution is a nonstatic foliation of the generalised Schwarzschild-AdS black hole with a horizon of constant curvature k. The boundary matter is an expanding perfect fluid that satisfies the first law of thermodynamics for all values of the temperature and the spatial curvature, but it admits a description as a scale-invariant fluid in local thermal equilibrium only when the inverse Hawking temperature is negligible compared with the spatial curvature length scale. A Casimir-type term in the holographic energy-momentum tensor is identified from the threshold of black hole formation and is shown to take different forms for k>=0 and k<0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا