ﻻ يوجد ملخص باللغة العربية
In this paper we study in detail the deformations introduced in [1] of the integrable structures of the AdS$_{2,3}$ integrable models. We do this by embedding the corresponding scattering matrices into the most general solutions of the Yang-Baxter equation. We show that there are several non-trivial embeddings and corresponding deformations. We work out crossing symmetry for these models and study their symmetry algebras and representations. In particular, we identify a new elliptic deformation of the $rm AdS_3 times S^3 times M^4$ string sigma model.
We consider the deformations of a supersymmetric quantum field theory by adding spacetime-dependent terms to the action. We propose to describe the renormalization of such deformations in terms of some cohomological invariants, a class of solutions o
We propose a $D$-dimensional generalization of $4D$ bi-scalar conformal quantum field theory recently introduced by G{u}rdogan and one of the authors as a strong-twist double scaling limit of $gamma$-deformed $mathcal{N}=4$ SYM theory. Similarly to t
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph sh
We consider the integrable open-chain transfer matrix corresponding to a Y=0 brane at one boundary, and a Y_theta=0 brane (rotated with the respect to the former by an angle theta) at the other boundary. We determine the exact eigenvalues of this tra
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curva