A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.
Analyses of structure functions (SFs) from neutrino and muon deep inelastic scattering data have shown discrepancies in F2 for x < 0.1. A new SF analysis of the CCFR collaboration data examining regions in x down to x=.0015 and 0.4 < Q^2 < 1.0 is pre
sented. Comparison to corrected charged lepton scattering results for F2 from the NMC and E665 experiments are made. Differences between muon and neutrino scattering allow that the behavior of F2 from muon scattering could be different from F2 from neutrino scattering as Q^2 approaches zero. Comparisons between F2 muon and F2 neutrino are made in this limit.
Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at la
rge x, shows a significant excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the excess. Adding a higher momentum tail due to the formation of ``quasi-deuterons makes some improvement. An exponentially falling F_2 propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters and ``few-nucleon correlations, can describe the data. A value of s=8.3 pm 0.7(stat.)pm 0.7(sys.) yields the best agreement with the data.
We report the first measurement of the flux-averaged cross section for charged current coherent $pi^{+}$ production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comp
arisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region.
Systematic differences in the the protons charge radius, as determined by ordinary atoms and muonic atoms, have caused a resurgence of interest in elastic lepton scattering measurements. The protons charge radius, defined as the slope of the charge f
orm factor at Q$^2$=0, does not depend on the probe. Any difference in the apparent size of the proton, when determined from ordinary versus muonic hydrogen, could point to new physics or need for the higher order corrections. While recent measurements seem to now be in agreement, there is to date no high precision elastic scattering data with both electrons and positrons. A high precision proton radius measurement could be performed in Hall B at Jefferson Lab with a positron beam and the calorimeter based setup of the PRad experiment. This measurement could also be extended to deuterons where a similar discrepancy has been observed between the muonic and electronic determination of deuteron charge radius. A new, high precision measurement with positrons, when viewed alongside electron scattering measurements and the forthcoming MUSE muon scattering measurement, could help provide new insights into the origins of the proton radius puzzle, and also provide new experimental constraints on radiative correction calculations.
We summarize recent experimental and theoretical results, which were reported in the working group on Structure Functions and Low-x at the DIS 2007 workshop.
CCFR/NuTeV Collaboration: B.T.Fleming
,et. al
.
(2000)
.
"A First Measurement of Low x Low Q^2 Structure Functions in Neutrino Scattering"
.
Bonnie T. Fleming
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا