ترغب بنشر مسار تعليمي؟ اضغط هنا

Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems

132   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the collective plasma excitations of a two-dimensional electron gas with an arbitrary lateral charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory based on the Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the equilibrium and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay particular attention to the evolution of the collective excitations as the system undergoes the transition from the ideal two-dimensional limit to the highly-localized one-dimensional limit. We also calculate the power absorption in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared (FIR) transmission spectroscopy.

قيم البحث

اقرأ أيضاً

We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi von Weizsacker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions, and provide physical insight into why it can be represented as a local functional. Finally, a simple, and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.
Cyclotron resonance has been measured in far-infrared transmission of GaAs/Al$_x$Ga$_{1-x}$As heterostructures with an etched hexagonal lateral superlattice. Non-linear dependence of the resonance position on magnetic field was observed as well as it s splitting into several modes. Our explanation, based on a perturbative calculation, describes the observed phenomena as a weak effect of the lateral potential on the two-dimensional electron gas. Using this approach, we found a correlation between parameters of the lateral patterning and the created effective potential and obtain thus insights on how the electronic miniband structure has been tuned. The miniband dispersion was calculated using a simplified model and allowed us to formulate four basic criteria that have to be satisfied to reach graphene-like physics in such systems.
It is shown that the convective instability in electron fluids in 3D and 2D Dirac semimetals is strongly inhibited. The major obstacles for the convection are the effects of the Coulomb forces and the momentum relaxation related to the interaction wi th impurities and phonons. The effect of the Coulomb forces is less pronounced in 2D materials, such as graphene. However, momentum relaxation still noticeably inhibits convection making it very difficult to achieve in practice.
77 - J.C. Pei , Na Fei , Y.N. Zhang 2015
Using the $hbar$-expansion of the Greens function of the Hartree-Fock-Bogoliubov equation, we extend the second-order Thomas-Fermi approximation to generalized superfluid Fermi systems by including the density-dependent effective mass and the spin-or bit potential. We first implement and examine the full correction terms over different energy intervals of the quasiparticle spectra in calculations of finite nuclei. Final applications of this generalized Thomas-Fermi method are intended for various inhomogeneous superfluid Fermi systems.
45 - Raseong Kim , Xufeng Wang , 2019
Fermi-Dirac integrals appear frequently in semiconductor problems, so a basic understanding of their properties is essential. The purpose of these notes is to collect in one place, some basic information about Fermi-Dirac integrals and their properti es. We also present Matlab scripts that calculate Fermi-Dirac integrals (the script F defined by Dingle (1957)) in three different ways. The codes are available in Appendix and at the following website: Notes on Fermi-Dirac Integrals (4th Edition) by Raseong Kim, Xufeng Wang, and Mark Lundstrom at http://nanohub.org/resources/5475 In the 4th edition, we also provide a new table-based Matlab script (download available at https://github.com/wang159/FDIntegral_Table) that is less likely to give large errors in a wide range of input while still much faster than the rigorous numerical integration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا